ANTIMONY FIXATION IN SOLID PHASES AT THE HYDROTHERMAL FIELD OF KOLUMBO SUBMARINE ARC-VOLCANO (SANTORINI): DEPOSITION MODEL AND ENVIRONMENTAL IMPLICATIONS


Published: Jul 28, 2016
Keywords:
contaminant epithermal Aegean
S.P. Kilias
M. Gousgouni
A. Godelitsas
P. Gamaletsos
T.J. Mertzimekis
P. Nomikou
A. Argyraki
J. Goettlicher
R. Steininger
D. Papanikolaou
Abstract

Antimony, an emergent global contaminant, that is hydrothermally discharged along with other epithermal metals(-loids) (Au, As, Hg, Ag, Tl, Ag) onto Kolumbo volcano’s shallow (<500 m water depth) crater seabed, is fixed either in pyrite, orpiment-like As-sulfides, and ferrihydrite-like Fe-oxy(hydro)oxides, or forms independent Pb(Zn)- Sb sulfosalts, of layered Sb-rich (up to 2.2 wt%) chimneys. High concentrations of Sb (≤ 27.2 wt%) are found in early colloform chemically-zoned hydrothermal pyrite, and later orpiment (As2S3)-type As sulfide phases(≤16.09 wt %), along individual micronscale growth zones. Antimony in pyrite may occur in the relatively more toxic trivalent (or lower valence) (Sb3+) rather than pentavalent (Sb5+) forms. Lead (Pb) always occurs with Sb in growth zones where the abundances of Sb and Pb vary inversely with Fe and S, suggesting that Sb and Pb occur either as homogeneously distributed sulfosalt nanoparticles of Sb and Pb and/or lattice bound trace elements. These findings indicate the solid phases that fix Sb on the seafloor are crucial for high- grade concentration during shallow-water hydrothermal polymetallic mineralization, and reducing the high hydrothermal flux of this notorious environmental toxin to seawater, near the fishing area of Santorini that is also one of the most popular tourist places in the world.

Article Details
  • Section
  • Special Session: Enviromental Geochemistry
Downloads
Download data is not yet available.
References
Amarasiriwardena, D. and Wu, F., 2011. Antimony: Emerging toxic contaminant in the environment,
Microchemical Journal, 97, 1-3.
Cantner, K., Carey, S. and Nomikou, P., 2014. Integrated volcanologic and petrologic analysis of
the 1650AD eruption of Kolumbo submarine volcano, Greece, Journal of Volcanology and
Geothermal Research, 269, 28-43.
Carey, S., Nomikou, P., Croff-Bell, K., Lilley, M., Lupton, J., Roman, C., Stathopoulou,E., Bejelou,
K. and Ballard, R., 2013. CO2 degassing from hydrothermal vents at Kolumbo submarine
volcano, Greece and the accumulation of acidic crater water, Journal of Geochemical
Exploration, 20, 223-302.
Deditius, A., Utsunomiya, S., Reich, M., Kesler, S.E., Ewing, R.C., Hough, R. and Walshe, J., 2011.
Trace metal nanoparticles in pyrite, Ore Geol. Rev., 42, 32-46.
EU Commission, 2014. Report on critical raw materials for the EU. Available online at:
Filella, M., Belzile, N. and Chen Yu-Wei., 2002a. Antimony in the environment: a review focused
on natural waters, I Occurrence, Earth-Science Reviews, 57, 125-176.
Filella, M., Belzile, N., and Chen, Yu-Wei., 2002b. Antimony in the environment: a review focused
on natural waters, II Relevant solution chemistry, Earth-Science Reviews, 59, 265-285.
Filella, M., Williams, P.A. and Belzile, N., 2009. Antimony in the environment: Knows and
unknowns, Environ, Chem., 6, 95-105.
Fouquet, Y., Cambon, P., Etoubleau, J., Charlou, J.L., Ondréas, H., Barriga, F.J.A.S., Cherkashov,
G., Semkova, T., Poroshina, I., Bohn, M., Donval, J.P., Henry, K., Murphy, P. and Rouxel,
O., 2010. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and
ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive
sulfide deposit. In: Rona, P.A., Devey, C.W., Dyment, J. and Murton, B.J., eds., Diversity of
Hydrothermal Systems on Slow Spreading Ocean Ridges, Geophysical Monograph, 188,
-367.
Gousgouni, M., 2014. Antimony fixation in solid phases at the hydrothermal field of the Kolumbo
submarine arc-volcano (Santorini): Deposit model and environmental implications, Unbubl.
M.Sc. thesis, National and Kapodistrian University of Athens, 167 pp.
Hübscher, C., Ruhnau, M. and Nomikou, P., 2015. Volcano-tectonic evolution of the polygenetic
Kolumbo submarine volcano/Santorini (Aegean Sea), Journal of Volcanology and
Geothermal Research, 291, 101-111.
Keith, M, Häckel F., Haase, K.M., Schwarz-Schampera, U. and Klemd, R., 2016. Race element
systematics of pyrite from submarine hydrothermal vents, Ore Geology Reviews, 72(1), 728-
, doi:10.1016/j.oregeorev.2015.07.012.
Kilias, S.P., Godelitsas, A., Gamaletsos, P., Mertzimekis, T.J, Nomikou, P., Goettlicher, J.,
Steininger, R., Argyraki, A., Gousgouni, M. and Papanikolaou, D., 2013b. Antimony in
hydrothermal chimneys of Kolumbo shallow-submarine vent field (Santorini, Greece)
Goldschmidt 2013 Conference Abstracts, Goldschmidt 2013 Conference Abstracts,
www.minersoc.org, doi:10.1180/minmag.2013.077.5.11.
Kilias, S.P., Nomikou, P., Papanikolaou, D., Polymenakou,P.N., Godelitsas, A., Argyraki, A., Carey,
S., Gamaletsos, P., Mertzimekis, T.J, Stathopoulou E., Goettlicher, J., Steininger, R.,
Betzelou, K., Livanos, I., Christakis, C., Bell, K.C. and Scoullos, M., 2013a. New insights
into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo
(Santorini), Greece. Sci. Rep., 3, 2421, doi: 10.1038/srep02421.
Kristall, B., Nielsen, D., Hannington, M.D., Kelley, D.S. and Delaney, J.R., 2011. Chemical
microenvironments within sulfide structures from the Mothra hydrothermal field: Evidence
from high resolution zoning of trace elements, Chemical Geology, 290, 12-30.
Majzlan, J. and Fillela, M., 2012, Editorial, In: Antimony, Majzlan, J. and Filella, M., eds., Chemie
der Erde - Geochemistry, 72(4), 1-66, doi: 10.1016/j.chemer.2012.04.002.
Maslennikov, V.V., Maslennikova, S.P., Large, R.R. and Danyushevsky, L.V., 2009. Study of trace
element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic hosted massive
sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma
mass spectrometry (LA-ICPMS), Econ. Geol., 104, 1111-1141.
Melekestseva, I.Y., Tret’yakov, G.A., Nimis, P., Yuminov, A.M., Maslennikov, V.V.,
Maslennikova, S.P., Kotlyarov, V.A., Beltenev, V.E., Danyushevsky, L.V. and Large, R.,
Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic
Ridge, 13° 30.87´ N): Evidence for phase separation and magmatic input, Marine Geology,
, 37-54.
Nomikou, P., Papanikolaou, D., Alexandri,M., Sakellariou, D. and Rousakis, G., 2013. Submarine
volcanoes along the Aegean Volcanic Arc, Tectonophysics, 507-508, 123-146.
Ravel, B. and Newville, M., 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray
absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12, 537-541.
Reich, M., Deditius, A., Chryssoulis, S., Li, J.-W., Ma, C.-Q., Parada, A.P., Barra, F. and Mittermayr,
F., 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a
SIMS/EPMA trace element study, Geochim. Cosmochim. Acta, 102, 42-62.
Sigurdsson, H., Carey, S., Alexandri, M., Vougioukalakis, Croff, K., Roman, C., Sakellariou, D.,
Anagnostou, C., Rousakis, G., Ioakim, C., Gogou, A., Ballas, D., Misaridis, T. and Nomikou,
P., 2006. Marine Investigations of Greece’s Santorini Volcanic Field, EOS 87, 337-339.
Wohlgemuth-Ueberwasser, C.C., Viljoen, F., Petersen, S. and Vorster, C., 2015. Distribution and
solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICPMS
study, Geochimica et Cosmochimica Acta, 159, 16-41.
Most read articles by the same author(s)