| More

ANTIMONY FIXATION IN SOLID PHASES AT THE HYDROTHERMAL FIELD OF KOLUMBO SUBMARINE ARC-VOLCANO (SANTORINI): DEPOSITION MODEL AND ENVIRONMENTAL IMPLICATIONS

Views: 680 Downloads: 223
S.P. Kilias, M. Gousgouni, A. Godelitsas, P. Gamaletsos, T.J. Mertzimekis, P. Nomikou, A. Argyraki, J. Goettlicher, R. Steininger, D. Papanikolaou
S.P. Kilias, M. Gousgouni, A. Godelitsas, P. Gamaletsos, T.J. Mertzimekis, P. Nomikou, A. Argyraki, J. Goettlicher, R. Steininger, D. Papanikolaou

Abstract


Antimony, an emergent global contaminant, that is hydrothermally discharged along with other epithermal metals(-loids) (Au, As, Hg, Ag, Tl, Ag) onto Kolumbo volcano’s shallow (<500 m water depth) crater seabed, is fixed either in pyrite, orpiment-like As-sulfides, and ferrihydrite-like Fe-oxy(hydro)oxides, or forms independent Pb(Zn)- Sb sulfosalts, of layered Sb-rich (up to 2.2 wt%) chimneys. High concentrations of Sb (≤ 27.2 wt%) are found in early colloform chemically-zoned hydrothermal pyrite, and later orpiment (As2S3)-type As sulfide phases(≤16.09 wt %), along individual micronscale growth zones. Antimony in pyrite may occur in the relatively more toxic trivalent (or lower valence) (Sb3+) rather than pentavalent (Sb5+) forms. Lead (Pb) always occurs with Sb in growth zones where the abundances of Sb and Pb vary inversely with Fe and S, suggesting that Sb and Pb occur either as homogeneously distributed sulfosalt nanoparticles of Sb and Pb and/or lattice bound trace elements. These findings indicate the solid phases that fix Sb on the seafloor are crucial for high- grade concentration during shallow-water hydrothermal polymetallic mineralization, and reducing the high hydrothermal flux of this notorious environmental toxin to seawater, near the fishing area of Santorini that is also one of the most popular tourist places in the world.


Keywords


contaminant; epithermal; Aegean

Full Text:

PDF

References


Amarasiriwardena, D. and Wu, F., 2011. Antimony: Emerging toxic contaminant in the environment,

Microchemical Journal, 97, 1-3.

Cantner, K., Carey, S. and Nomikou, P., 2014. Integrated volcanologic and petrologic analysis of

the 1650AD eruption of Kolumbo submarine volcano, Greece, Journal of Volcanology and

Geothermal Research, 269, 28-43.

Carey, S., Nomikou, P., Croff-Bell, K., Lilley, M., Lupton, J., Roman, C., Stathopoulou,E., Bejelou,

K. and Ballard, R., 2013. CO2 degassing from hydrothermal vents at Kolumbo submarine

volcano, Greece and the accumulation of acidic crater water, Journal of Geochemical

Exploration, 20, 223-302.

Deditius, A., Utsunomiya, S., Reich, M., Kesler, S.E., Ewing, R.C., Hough, R. and Walshe, J., 2011.

Trace metal nanoparticles in pyrite, Ore Geol. Rev., 42, 32-46.

EU Commission, 2014. Report on critical raw materials for the EU. Available online at:

http://mima.geus.dk/report-on-critical-raw-materials_en.pdf.

Filella, M., Belzile, N. and Chen Yu-Wei., 2002a. Antimony in the environment: a review focused

on natural waters, I Occurrence, Earth-Science Reviews, 57, 125-176.

Filella, M., Belzile, N., and Chen, Yu-Wei., 2002b. Antimony in the environment: a review focused

on natural waters, II Relevant solution chemistry, Earth-Science Reviews, 59, 265-285.

Filella, M., Williams, P.A. and Belzile, N., 2009. Antimony in the environment: Knows and

unknowns, Environ, Chem., 6, 95-105.

Fouquet, Y., Cambon, P., Etoubleau, J., Charlou, J.L., Ondréas, H., Barriga, F.J.A.S., Cherkashov,

G., Semkova, T., Poroshina, I., Bohn, M., Donval, J.P., Henry, K., Murphy, P. and Rouxel,

O., 2010. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and

ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive

sulfide deposit. In: Rona, P.A., Devey, C.W., Dyment, J. and Murton, B.J., eds., Diversity of

Hydrothermal Systems on Slow Spreading Ocean Ridges, Geophysical Monograph, 188,

-367.

Gousgouni, M., 2014. Antimony fixation in solid phases at the hydrothermal field of the Kolumbo

submarine arc-volcano (Santorini): Deposit model and environmental implications, Unbubl.

M.Sc. thesis, National and Kapodistrian University of Athens, 167 pp.

Hübscher, C., Ruhnau, M. and Nomikou, P., 2015. Volcano-tectonic evolution of the polygenetic

Kolumbo submarine volcano/Santorini (Aegean Sea), Journal of Volcanology and

Geothermal Research, 291, 101-111.

Keith, M, Häckel F., Haase, K.M., Schwarz-Schampera, U. and Klemd, R., 2016. Race element

systematics of pyrite from submarine hydrothermal vents, Ore Geology Reviews, 72(1), 728-

, doi:10.1016/j.oregeorev.2015.07.012.

Kilias, S.P., Godelitsas, A., Gamaletsos, P., Mertzimekis, T.J, Nomikou, P., Goettlicher, J.,

Steininger, R., Argyraki, A., Gousgouni, M. and Papanikolaou, D., 2013b. Antimony in

hydrothermal chimneys of Kolumbo shallow-submarine vent field (Santorini, Greece)

Goldschmidt 2013 Conference Abstracts, Goldschmidt 2013 Conference Abstracts,

www.minersoc.org, doi:10.1180/minmag.2013.077.5.11.

Kilias, S.P., Nomikou, P., Papanikolaou, D., Polymenakou,P.N., Godelitsas, A., Argyraki, A., Carey,

S., Gamaletsos, P., Mertzimekis, T.J, Stathopoulou E., Goettlicher, J., Steininger, R.,

Betzelou, K., Livanos, I., Christakis, C., Bell, K.C. and Scoullos, M., 2013a. New insights

into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo

(Santorini), Greece. Sci. Rep., 3, 2421, doi: 10.1038/srep02421.

Kristall, B., Nielsen, D., Hannington, M.D., Kelley, D.S. and Delaney, J.R., 2011. Chemical

microenvironments within sulfide structures from the Mothra hydrothermal field: Evidence

from high resolution zoning of trace elements, Chemical Geology, 290, 12-30.

Majzlan, J. and Fillela, M., 2012, Editorial, In: Antimony, Majzlan, J. and Filella, M., eds., Chemie

der Erde - Geochemistry, 72(4), 1-66, doi: 10.1016/j.chemer.2012.04.002.

Maslennikov, V.V., Maslennikova, S.P., Large, R.R. and Danyushevsky, L.V., 2009. Study of trace

element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic hosted massive

sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma

mass spectrometry (LA-ICPMS), Econ. Geol., 104, 1111-1141.

Melekestseva, I.Y., Tret’yakov, G.A., Nimis, P., Yuminov, A.M., Maslennikov, V.V.,

Maslennikova, S.P., Kotlyarov, V.A., Beltenev, V.E., Danyushevsky, L.V. and Large, R.,

Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic

Ridge, 13° 30.87´ N): Evidence for phase separation and magmatic input, Marine Geology,

, 37-54.

Nomikou, P., Papanikolaou, D., Alexandri,M., Sakellariou, D. and Rousakis, G., 2013. Submarine

volcanoes along the Aegean Volcanic Arc, Tectonophysics, 507-508, 123-146.

Ravel, B. and Newville, M., 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray

absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12, 537-541.

Reich, M., Deditius, A., Chryssoulis, S., Li, J.-W., Ma, C.-Q., Parada, A.P., Barra, F. and Mittermayr,

F., 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a

SIMS/EPMA trace element study, Geochim. Cosmochim. Acta, 102, 42-62.

Sigurdsson, H., Carey, S., Alexandri, M., Vougioukalakis, Croff, K., Roman, C., Sakellariou, D.,

Anagnostou, C., Rousakis, G., Ioakim, C., Gogou, A., Ballas, D., Misaridis, T. and Nomikou,

P., 2006. Marine Investigations of Greece’s Santorini Volcanic Field, EOS 87, 337-339.

Wohlgemuth-Ueberwasser, C.C., Viljoen, F., Petersen, S. and Vorster, C., 2015. Distribution and

solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICPMS

study, Geochimica et Cosmochimica Acta, 159, 16-41.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 S.P. Kilias, M. Gousgouni, A. Godelitsas, P. Gamaletsos, T.J. Mertzimekis, P. Nomikou, A. Argyraki, J. Goettlicher, R. Steininger, D. Papanikolaou

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.