| More

ANISOTROPY OF MAGNETIC SUSCEPTIBILITY (AMS) IN VOLCANIC FORMATIONS: THEORY AND PRELIMINARY RESULTS FROM RECENT VOLCANICS OF BROADER AEGEAN.

Views: 315 Downloads: 275
I. Zananiri, D. Kondopoulou
I. Zananiri, D. Kondopoulou

Abstract


The anisotropy of magnetic susceptibility (AMS) is a physical property of rocks widely used in petrofabric studies and other applications. It is based on the measurement of low-field magnetic susceptibility in different directions along a sample. From this process several scalar properties arise, defining the magnitude and symmetry of the AMS ellipsoid, along with the magnetic foliation, namely the magnetic fabric. Imaging the sense of magma flow in dykes is an important task for volcanology; the magnetic fabric provides a fast and accurate way to infer this flow direction. Moreover, the AMS technique can be used in order to distinguish sills and dykes, a task that is almost impossible by using only field observations. Finally in the case of lava flows, the method can be applied to define the local flow conditions and to indicate the position of the "paleo" source region. However, this technique is quite new in Greece. Some preliminary results from volcanic formations of continental Greece and Southern Aegean are presented (Aegina, Almopia, Elatia, Gavra, Kos, Patmos, Samos, Samothraki and Santorini).


Full Text:

PDF

References


Archanjo, C.J., Trindade, R.I., Macedo, J.W.P., and Araujo, M.G., 2000. Magnetic fabric of a basaltic dyke swarm associated with Mesozoic rifting in northeastern Brazil, J. South Am. Earth Sci., 13,179-189.

Atzemoglou, Α., Kondopoulou, D., and I. Zananiri, 2001. Paleomagnetism and magnetic fabrics of the Almopias, Thessaly and Milos volcanics. Implications for the regional deformation, Bulletin of the Geological Society of Greece, Vol. XXXIV/1, 61-68.

Bolshakov, AS., and Skorodkin, Y.P., 1967. Magnetic anisotropy of eruptive rocks, Akad. Nauk. SSSR Izv. Fiz. Zemlli, 1967, 78-82.

Cagnoli, B., and Tarling, D.H., 1997. The reliability of anisotropy of magnetic susceptibility (AMS) data as flow direction indicators in friable base surge and ignimbrite deposits: Italian examples, J. Volcano!. Geotherm. Res., 75, 309-320.

Canon-Tapia, E. and Pinkerton, Η., 2000. The anisotropy of magnetic susceptibility of lava flows: an experimental approach, J. Volcanol. Geotherm. Res., 98, 219-233.

Dragoni, M., Lanza, R., and Tallarico, Α., 1997. Magnetic anisotropy produced by magma flow: theoretical model and experimental data from Ferrar dolerite sills (Antarctica), Geophys.J. Int., 128, 230-240.

Ellwood, B.B., 1978. Flow and emplacement direction determined for selected basaltic bodies using magnetic susceptibility anisotropy measurements, Earth Planet. Sci. Lett., 41, 254-264.

Ellwood, B.B., and Fisk, M.R., 1977. Anisotropy of magnetic susceptibility variations in a single Icelandic columnar basalt, Earth Planet. Sci. Lett., 35, 116-122.

Ellwood, B.B., 1982. Estimates of flow direction for calc-alkaline welded tuffs and paleomagnetic data reliability from anisotropy of magnetic susceptibility measurements: central San juan Mountains, southwest Colorado, Earth Planet. Sei. Leu., 59, 303-314.

Ernst, R.E., 1990. Magma flow directions in two mafic Proterozoic dyke swarms of the Canadian shield, as estimated using anisotropy of magnetic susceptibility data. In: Parker, A.J., Rickwood, P.C, Tucker, D.H. (Eds.), Mafic Dykes and Emplacement Mechanisms, Balkema, Rotterdam, pp. 231-235.

Gil, Α., Lago, M., Gale, C, Pocovi, Α., and Arranz, E., 2002. Magnetic fabric in folded sills and lava flows. A case study in the Permian basalts of the Anayet Massif (Pyrenean Axial Zone, Spain), Tectonophysics, 350, 1-15.

Halvorsen, E., 1974. The magnetic fabric of some dolerite intrusions, NE Spitsbergen: Implications for their mode of emplacement, Earth Planet. Sci. Lett., 21, 127-133.

Herrero-Bervera, E., Walker, G.P.L., Canon-Tapia, E., and Garcia, M.O., 2001. Magnetic fabric and inferred flow direction of dikes, conesheets and sill swarms, Isle of Skye, Scotland, J. Volcanol. Geotherm. Res., 106, 195-210.

Hillhouse, J.W., and Wells, R.E., 1991. Magnetic fabric, flow directions, and source area of the lower Miocene Peach Springs Tuff in Arizona, California and Nevada, J. Geophys. Res., 96, 12443-12460.

Jelinek, V., 1981. Characterization of the magnetic fabric of rocks, Tectonophysics, 79, T63-T67.

Khan, M.A., 1962. The anisotropy of magnetic susceptibility of some igneous and metamorphic rocks, J. Geophys. Res., 67, 2867-2875.

Knight, M.D., and Walker, G.P.L., 1988. Magma flow direction in dikes of the Koolau complex, Oahu, determined from magnetic fabric studies, J. Geophys. Res., 93, 4301-4319.

Knight, M.D., Walker, G.P.L., Ellwood, B.B., and Diehl, J.F., 1986. Stratigrapfy, paleomagnetism, and magnetic fabric of the Toba tuffs: constraints on the sources and eruptive style, J. Volcanol. Geotherm. Res., 56, 205-220.

Kolofikova, O., 1976. Geological interpretation of measurements of magnetic properties of basalts on example of the Chribsky Las Lava Flow of the Velky Roudny Volcano (Nizky Jesenik), Cas. Mineral. Geol., 21, 387-396 (In Czech).

Kondopoulou, D., Michard, Α., Zananiri, I., Feinberg, Η., Atzemoglou, Α., Pozzi, J.-P., and Voidomatis, Ph., 2004. Neogene tectonic rotations in the vicinity of the North Aegean Trough: new paleomagnetic evidence from Athos and Samothraki (Greece), (submitted)

Lamarche, G., and Froggatt, P.C., 1993. New eruptive vents for the Whakamaru ignimbrite (Taupo volcanic sone) identified from magnetic fabric studies, N.Z. J. Geol. Geophys., 36, 213-222.

Le Pennée, J.-L, Chenn, Y., Diot, H., Froger, J.-L, and Gourgaud, Α., 1998. Interpretation of anisotropy of magnetic susceptibility fabric of ignimbrites in terms of kinematic and sedimentological mechanisms. An Anatolian case study, Earth Planet. Sci. Lett, 157, 105-127.

MacDonald, W.D., and Palmer, H.C., 1990. Flow directions in ash-flow tuffs: a comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff) Vallès Caldera, New Mexico, USA, Bull. Volcano!., 53, 45-59.

MacDonald, W.D., Palmer, H.C., and Hayatsu, Α., 1992. Egan Range Volcanic Complex, Nevada: geochronology, paleomagnetism and magnetic fabric, Phys. Earth Planet. Inter., 74, 109-126.

McKenzie, D., McKenzie, J.M., and Saunders, R.S., 1992. Dike emplacement on Venus and Earth, J. Geophys. Res., 97, 15990-15997.

Morris, Α., 2000. Magnetic fabric and palaeomagnetic analyses of the Plio-Quaternary calc-alkaline series of Aegina Island, South Aegean volcanic arc, Greece, Earth Planet. Sci. Lett., 176, 91-105.

Palmer, H.C., McDonald, W.D., Gromme, CS., and Ellwood, B.B., 1996. Magnetic properties and emplacement of the Bishop Tuff, California, Bull. Volcano!., 58, 101-116.

Palmer, H.C., and MacDonald, W.D., 1999. Anisotropy of magnetic susceptibility in relation to source vents of ignimbrites: empirical observations, Tectonophysics, 307, 207-218.

Raposo, M.I.B., and D'Agrella-Filho, M.S., 2000. Magnetic fabrics of dike swarms from SE Bahia State, Brazil: their significance and implications for Mesoproterozoic basic magmatism in the Sao Francisco Craton, Precambrian Res., 99, 309-325.

Rochette, P., Jenatton, L, Dupuy, C, Boudier, F., and Reuber, I., 1991. Diabase dikes emplacement in the Oman ophiolite: a magnetic fabric study with reference to geochemistry. In: Peters, Tj., Nicolas, Α., Coleman, R.G. (Eds.), Ophiolite Genesis and Evolution of the Oceanic Lithosphère, Kluwer, Dordrecht, pp. 55-82.

Seaman, S.J., Mcintosh, W.C., Geissman, J.W., Williams, M.L., and Eiston, W.E., 1991. Magnetic fabrics of the Bloodgood Canyon and Shelley Peak Tuffs, southwestern New Mexico: implications for emplacement and ateration processes, Bull. Volcano!., 53, 460-476.

Smith, J.V., 1998. Interpretation of domainal groundmass textures in basalt lavas of the southern Lamington Volcanics, eastern Australia, J. Geophys. Res., 103, 27383-27391.

Staudigel, H., Gee, J., Tauxe, L, and Varga, R.J., 1992. Shallow intrusive directions of sheeted dikes in the Troodos ophiolite: anisotropy of magnetic susceptibility and structural data, Geology, 20, 841-844.

Tarling, D.H., and Hrouda, F., 1993. The magnetic anisotropy of rocks, Chapman and Hall, London, 217 pp.

Tauxe, L., Gee, J.S., and Staudigel, H., 1998. Flow directions in dikes from anisotropy of magnetic susceptibility data: the bootstrap way, J. Geophys. Res., 103, 17775-17790.

Tauxe, L., 1998. Paleomagnetic principles and practice, Kluwer Academic Publishers, Dordreht/Boston/London, pp. 299.

Varga, J.V., Gee, J.S., Staudigel, H., and Tauxe, L., 1998. Dike surface lineations as magma flow indicators within the sheeted dike complex of the Troodos ophiolite, Cyprus, J. Geophys. Res., 103, 5241-5256.

Wang, X., Roberts, J., and Schmidt, P., 2001. Flow directions of Carboniferous ignimbrites, southern New England Orogen, Australia, using anisotropy of magnetic susceptibility, J. Volcano!. Geotherm. Res., 110,1-25.

Wing-Fatt, L., and Stacey, F.D., 1966. Magnetic anisotropy of laboratory materials in which magma flow is simulated, Pure Appi. Geophys., 64, 78-80.

Zananiri, I., 2000. Examination of the relationships between magnetic and mineralogical - histological anisotropy in granitic rocks, Master Thesis, Department of Geophysics, School of Geology, Aristotle University of Thessaloniki, Greece.

Zanella, E., De Astis, G., Dellino, P., Lanza, R., and La Volpe, L., 1999. Magnetic fabric and remanent magnetization of pyroclastic surge deposits from Vulcano (Aeolian Islands, Italy), J. Volcano/. Geothern. Res., 93,

-236.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 I. Zananiri, D. Kondopoulou

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.