A semi-quantitative method to combine tectonic stress indicators: example from the Southern Calabrian Arc (Italy)


Δημοσιευμένα: Δεκ 27, 2020
Salvatore Scudero
https://orcid.org/0000-0003-1585-882X
Giorgio De Guidi
Riccardo Caputo
Vincenzo Perdicaro
Περίληψη

Databases of tectonic stress indicators are commonly based on different types of observations at different spatial and temporal scales. Each single indicator can be variously representative of the real stress field and the relative importance of all the indicators should be accounted for before any following elaboration. We propose a semi-quantitative procedure which assigns weights to each indicator on the basis of its quality and its representative volume. In this way the indicators can be reliably combined to produce, for example, stress field maps or stress trajectories. The proposed weighting criterion has been applied to a dataset of 440 crustal stress indicators specifically compiled, gathering focal mechanisms and geological data from the literature, and original data from structural features derived from devoted fieldwork, for the southern part of the Calabrian Arc (Italy). This area represents an interesting case study because of its complex geodynamic and structural arrangement. Data were ranked and the orientation of the minimum horizontal stress (Sh) has been interpolated and smoothed on a regular grid. We drew maps of the principal stress axes and inferred the stress regimes over the investigated area. Results are in agreement with independent information from the literature and display the non-uniform orientation of the tectonic stresses and the occurrence of perturbations both at regional and local scale.

Λεπτομέρειες άρθρου
  • Ενότητα
  • Τεκτονική και Γεωδυναμική
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Βιογραφικά Συγγραφέων
Salvatore Scudero, Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti, Via di Vigna Murata 605, 00143, Rome, Italy
Osservatorio Nazionale Terremoti, Via di Vigna Murata 605, 00143, Rome
Giorgio De Guidi, University of Catania
Department of Biological, Geological and Environmental Sciences, Corso Italia 55, 9512
Αναφορές
Allmendinger R.W., Cardozo, N.C., & Fisher, D., 2013. Structural Geology Algorithms: Vectors and Tensors. Cambridge, England, Cambridge University Press, 289 pp.
Aloisi, M., Bruno, V., Cannavò, F., Ferranti, L., Mattia, M., Monaco, C., & Palano, M., 2013. Are the source models of the M 7.1 1908 Messina Straits earthquake reliable? Insights from a novel inversion and a sensitivity analysis of levelling data. Geophysical Journal International, 192(3), 1025-1041, doi: 10.1093/gji/ggs062.
Assameur, D.M. & Mareschal, J.-C., 1995. Stress induced by topography and crustal density heterogeneities: implication for the seismicity of southeastern Canada. Tectonophys., 241, 179-192.
Barreca, G., Branca, S., Corsaro, R. A., Scarfì, L., Cannavò, F., Aloisi, M., & Faccenna, C., 2020. Slab Detachment, Mantle Flow, and Crustal Collision in Eastern Sicily (Southern Italy): Implications on Mount Etna Volcanism. Tectonics, 39(9), e2020TC006188.
Barreca G., Scarfì L., Gross F., Monaco C., De Guidi G., 2019. Fault pattern and seismotectonic potential at the south-western edge of the Ionian Subduction system (southern Italy): New field and geophysical constraints. Tectonophys., 761, 31–45, doi: 10.1016/0040-951(85)90064-2.
Billi, A., Barberi, G., Faccenna, C., Neri, G., Pepe, F., & Sulli, A., 2006. Tectonics and seismicity of the Tindari Fault System, southern Italy: crustal deformations at the transition between ongoing contractional and extensional domains located above the edge of a subducting slab. Tectonics, 25(2), doi: 10.1029/2004TC001763.
Billi, A., Presti, D., Faccenna, C., Neri, G., & Orecchio, B., 2007. Seismotectonics of the Nubia plate compressive margin in the south Tyrrhenian region, Italy: Clues for subduction inception. J. Geophys. Res.: Solid Earth, 112(B8). doi: 10.1029/2006JB004837.
Bird, P., & Li, Y., 1996. Interpolation of principal stress directions by nonparametric statistics: Global maps with confidence limits. J. Geophys. Res., 101, 5435-5443.
Blenkinsop, T.G., 2008. Relationships between faults, extension fractures and veins, and stress. J. Struct. Geol., 30, 622-632, doi: 10.1016/j.jsg.2008.01.008.
Caputo, M. & Caputo, R., 1989. Estimate of the regional stress field using joint systems. Bull. Geol. Soc. Greece, 23, 101–118
Caputo, M., Manzetti, V. & Nicelli, R., 1985. Topography and its isostatic compensation as a cause of seismicity; A revision. Tectonophysics, 111, 25-39, doi: 10.1016/0040-1951(85)90064-2.
Caputo, M., Marten, R. & Mecham, B., 1988.The stress field due to mass anomalies in the Apennines, the Kermadec-Tonga Trench and the Rio Grande Rift. Annales Tectonicae, 2, 33-50.
Caputo, R., 2005. Stress variability and brittle tectonic structures. Earth Sci. Rev., 70, 103-127, doi: 10.1016/j.earscirev.2004.11.005.
Caputo, R. & Pavlides, S., 1993. Late Cainozoic geodynamic evolution of Thessaly and surroundings (central-northern Greece). Tectonophys., 223(3-4), 339-362.
Caputo, R. & Sato H., 1996. An integrated study to recent tectonics in Central Japan: seismological, geodetic, morphotectonic and structural data compared. Tectonophys., 262, 1-4, 133-157.
Carafa, M.M.C. & Barba, S., 2013. The stress field in Europe: optimal orientations with confidence limits. Geophys. J. Int., 193(2), 531-548.
Carafa, M.M., Tarabusi, G. & Kastelic, V., 2015. SHINE: Web application for determining the horizontal stress orientation. Comp. Geosci., 74, 39-49, doi: 10.1016/j.cageo.2014.10.001.
Cartwright, J.A. & Jackson, M.P.A., 2008. Initiation of gravitational collapse of an evaporite basin margin: the Messinian saline giant, Levant Basin, eastern Mediterranean. Geol. Soc. Am. Bull., 120, 399-413, doi: 10.1130/B26081X.1.
Casas, A.M., Simon, J.L. & Seron, F.J., 1992. Stress deflection in a tectonic compressional field: a model for the northwestern Iberian Chain, Spain. J. Geophys. Res., 97, 7183-7192.
Catalano, S., De Guidi, G., Monaco, C., Tortorici, G. & Tortorici, L., 2008. Active faulting and seismicity along the Siculo–Calabrian Rift Zone (southern Italy). Tectonophys., 453, 177-192, doi: 10.1016/j.tecto.2007.05.008
Catalano, S., Romagnoli, G. & Tortorici, G., 2010. Kinematics and dynamics of the Late Quaternary rift-flank deformation in the Hyblean Plateau (SE Sicily). Tectonophys., 486, 1-14, doi: 10.1016/j.tecto.2010.01.013.
D’Agostino, N. & Selvaggi, G., 2004. Crustal motion along the Eurasia-Nubia plate boundary in the Calabrian Arc and Sicily and active extension in the Messina Straits from GPS measurements. J. Geophys. Res. (1978–2012), 109(B11). doi: 10.1029/2004JB002998
De Guidi, G., Caputo, R. & Scudero, S., 2013. Regional and local stress field orientation inferred from quantitative analyses of extension joints: case study from southern Italy. Tectonics, 32(2), 239-251, doi: 10.1002/tect.20017.
De Guidi, G., Lanzafame, G., Palano, M., Puglisi, G., Scaltrito, A. & Scarfì, L., 2013. Multidisciplinary study of the Tindari Fault (Sicily, Italy) separating ongoing contractional and extensional compartments along the active Africa–Eurasia convergent boundary. Tectonophys., 588, 1-17.
De Guidi, G., Barberi, G., Barreca, G., Bruno, V., Cultrera, F., Grassi, S., Imposa, S., Mattia, M., Monaco, C., Scarfì, L. & Scudero, S., 2015. Geological, seismological and geodetic evidence of active thrusting and folding south of Mt. Etna (eastern Sicily): Revaluation of “seismic efficiency” of the Sicilian Basal Thrust. J. Geodyn., 90, 32-41, doi: 10.1016/j.jog.2015.06.001.
Del Ben, A., Barnaba, C. & Taboga, A., 2008. Strike-slip systems as the main tectonic features in the Plio-Quaternary kinematics of the Calabrian Arc. Marine Geophys. Res., 29(1), 1-12. doi: 10.1007/s11001-007-9041-6.
Doglioni, C., Ligi, M., Scrocca, D., Bigi, S., Bortoluzzi, G., Carminati, E., & Riguzzi, F., 2012. The tectonic puzzle of the Messina area (Southern Italy): Insights from new seismic reflection data. Scientific Reports, 2, 970, doi: 10.1038/srep00970.
Fabbri, O. and Fournier, M., 1999. Extension in the southern Ryukyu are (Japan): link with oblique subduction and back are rifting. Tectonics, 18(3), 486-497.
Falà, F., 2011. Determinazione dei Meccanismi Focali e del Tensore dello Sforzo in Italia Meridionale. PhD thesis, Università di Catania.
Ferranti, L., Monaco, C., Morelli, D., Antonioli, F.& Maschio, L., 2008. Holocene activity of the Scilla Fault, Southern Calabria: Insights from coastal morphological and structural investigations. Tectonophys., 453(1-4), 74-93.
Gallais, F., Graindorge, D., Gutscher, M. A., & Klaeschen, D., 2013. Propagation of a lithospheric tear fault (STEP) through the western boundary of the Calabrian accretionary wedge offshore eastern Sicily (Southern Italy). Tectonophys., 602, 141-152, doi: 10.1016/j.tecto.2012.12.026.
Giampiccolo, E., Musumeci, C., Falà, F. & Gresta, S., 2008. Seismological investigations in the Gioia Tauro Basin (southern Calabria, Italy). Ann. Geophys., 51(5/6), 769-799.
Ghisetti, F., 1979a. Evoluzione neotettonica dei principali sistemi di faglie della Calabria centrale. Boll. Soc. Geol. It., 98,387-430.
Ghisetti, F., 1979b. Relazioni tra strutture e fasi trascorrenti e distensive lungo i sistemi Messina-Fiumefreddo, Tindari-Letojanni e Alia-Malvagna (Sicilia nord-orientale): uno studio microtettonico. Geol. Rom, 18, 23-58.
Harris, R.A., 1998. Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard. J. Geophys. Res., 103, 24,347-24,358.
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J. & Ziegler, M.O., 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophys., 744, 484-498.
Heidbach, O., Reinecker, J., Tingay, M., Müller, B., Sperner, B., Fuchs, K. & Wenzel, F., 2007. Plate boundary forces are not enough: second- and third-order stress patterns highlighted in the World Stress Map database. Tectonics, 26(6), TC6014. doi: 10.1029/2007TC002133.
Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., & Müller, B., 2010. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482, 3-15, doi: 10.1016/j.tecto.2009.07.023
Jaeger, J.C., Cook, N.G.W., and Zimmerman, R.W., 2007. Fundamentals of Rock Mechanics, 4th ed. Oxford: Blackwell.
Kanamori, H., & Anderson, D. L., 1975.Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am., 65(5), 1073-1095.
Larroque, J.M., Etchecopar, A. & Philip, H., 1987. Evidence for the permutation of stresses σ1 and σ2 in the Alpine foreland: the example of the Rhine graben. Tectonophys., 144, 315-322.
Lavecchia, G., Ferrarini, F., De Nardis, R., Visini, F. & Barbano, M.S., 2007. Active thrusting as a possible seismogenic source in Sicily (Southern Italy): Some insights from integrated structural–kinematic and seismological data. Tectonophys., 445, 145-167. doi: 10.1016/j.tecto.2007.07.007
Maggini, M. & Caputo, R., 2020. Rheological behaviour in continental and oceanic subduction: inferences for the seismotectonics of the Aegean Region. Turkish J. Earth Sci., 29, 381-405, doi: 10.3906/yer-1909-4.
Maerten, L., Gillespie, P. & Pollard, D.D., 2002. Effects of local stress perturbation on secondary fault development. J. Struct. Geol., 24, 145-153.
McGarr, A., 1988. On the state of lithospheric stress in the absence of applied tectonic forces. J. Geophys. Res., 93, B11, 13,609-13,617.
Mercier J.-L., 1976. La néotectonique. Ses méthodes et ses buts. Un exemple: l'Arc Egéen (Méditerranée orientale). Rev. Géol. Dyn. Géogr. Phys., XVIII (4), 323-346.
Mercier, J.L., Sebrier, M., Lavenu, A., Cabrera, J., Bellier, O., Dumont, J.-F. & Machare, J., 1992. Changes in the tectonic regime above a subduction zone of Andean type: the Andes of Peru and Bolivia during the Pliocene-Pleistocene. J. Geophys. Res., 97, B8, 11,945-11,982.
Meschis, M., Roberts, G. P., Mildon, Z.K., Robertson, J., Michetti, A.M., & Walker, J.F., 2019. Slip on a mapped normal fault for the 28th December 1908 Messina earthquake (Mw 7.1) in Italy. Scientific Reports, 9, 1-8, doi: 10.1038/s41598-019-42915-2.
Monaco, C., Tapponnier, P., Tortorici, L. & Gillot, P. Y., 1997. Late Quaternary slip rates on the Acireale-Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily). Earth Planet. Sci. Lett., 147, 125-139.
Montone, P., Mariucci, M.T. & Pierdominici, S., 2012. The Italian present-day stress map. Geophys. J. Int., 189, 705-716.
Nakamura, K., 1977. Volcanoes as possible indicators of tectonic stress orientation—principle and proposal. J. Volc. Geoth. Res., 2, 1-16, doi: 10.1016/0377-0273(77)90012-9.
Neri, G., Barberi, G., Oliva, G. & Orecchio, B., 2005. Spatial variations of seismogenic stress orientations in Sicily, south Italy. Physics Earth Planet. Inter., 148, 175-191. doi: 10.1016/j.pepi.2004.08.009.
Neri, G., Marotta, A.M., Orecchio, B., Presti, D., Totaro, C., Barzaghi, R. & Borghi, A., 2012. How lithospheric subduction changes along the Calabrian Arc in southern Italy: geophysical evidences. Int. J. Earth Sci., 101, 1949-1969. doi: 10.1007/s00531-012-0762-7.
Neri, G., Orecchio, B., Scolaro, S. & Totaro, C., 2020. Major Earthquakes of Southern Calabria, Italy, Into the Regional Geodynamic Context. Frontiers in Earth Science, 8:579846, doi: 10.3389/feart.2020.579846
Nüchter, J.A. & Stöckhert, B., 2008. Coupled stress and pore fluid pressure changes in the middle crust: vein record of coseismic loading and postseismic stress relaxation. Tectonics, 27, TC1007, doi: 10.1029/2007TC002180.
Palano, M., 2015. On the present-day crustal stress, strain-rate fields and mantle anisotropy pattern of Italy. Geophys. J. Int., 200, 967-983. doi: 10.1093/gji/ggu451.
Palano, M., Ferranti, L., Monaco, C., Mattia, M., Aloisi, M., Bruno, V., Cannavò, F. & Siligato, G., 2012. GPS velocity and strain fields in Sicily and southern Calabria, Italy: updated geodetic constraints on tectonic block interaction in the central Mediterranean. J. Geophys. Res., 117(B7). doi: 10.1029/2012JB009254.
Palano, M., Schiavone, D., Loddo, M., Neri M., Presti, D., Quarto, R., Totaro, C. & Neri, G., 2015. Active upper crust deformation pattern along the southern edge of the Tyrrhenian subduction zone (NE Sicily): Insights from a multidisciplinary approach. Tectonophys., 657, 205-218. doi:10.1016/j.tecto.2015.07.005.
Peterson, M.S. & Wong, T.F., 2005. Experimental Rock Deformation – The Brittle Field, 2nd ed. Springer-Verlag, Berlin
Pierdominici, S. & Heidbach, O., 2012. Stress field of Italy-Mean stress orientation at different depths and wave-length of the stress pattern. Tectonophys., 532, 301-311, doi: 10.1016/j.tecto.2012.02.018.
Polonia, A., Torelli, L., Gasperini, L. & Mussoni, P., 2012.Active faults and historical earthquakes in the Messina Straits area (Ionian Sea). Nat. Haz. Earth Sys.Sci., 12, 2311-2328. doi: 10.5194/nhess-12-2311-2012.
Polonia, A., Torelli, L., Mussoni, P., Gasperini, L., Artoni, A. & Klaeschen, D., 2011. The Calabrian Arc subduction complex in the Ionian Sea: Regional architecture, active deformation, and seismic hazard. Tectonics, 30, TC5018. doi: 10.1029/2010TC002821.
Presti, D., Billi, A., Orecchio, B., Totaro, C., Faccenna, C. & Neri, G., 2013. Earthquake focal mechanisms, seismogenic stress, and seismotectonics of the Calabrian Arc, Italy. Tectonophys., 602, 153-175. doi: 10.1016/j.tecto.2013.01.030.
Roberts, G.P. & Michetti, A.M., 2004. Spatial and temporal variations in growth rates along active normal fault Systems: an example from Lazio-Abruzzo, central Italy. J. Struct. Geol., 26, 339-376.
Scarfì, L., Messina, A. & Cassisi, C., 2013. Sicily and Southern Calabria focal mechanism database: a valuable tool for local and regional stress field determination. Ann. Geophys., 56, D0109.
Scarfì, L., Barberi, G., Musumeci, C. & Patanè, D., 2016. Seismotectonics of northeastern Sicily and southern Calabria (Italy): New constraints on the tectonic structures featuring in a crucial sector for the central Mediterranean geodynamics. Tectonics, 35, 812-830.
Scarfi, L., Barberi, G., Barreca, G., Cannavo, F., Koulakov, I. & Patane, D., 2018. Slab narrowing in the Central Mediterranean: the Calabro-Ionian subduction zone as imaged by high resolution seismic tomography. Sci. Rep. 2018 (8), 5178, doi: 10.1038/s41598-018-23543-8.
Sperner, B., Müller, B., Heidbach, O., Delvaux, D., Reinecker, J. &Fuchs, K., 2003. Tectonic stress in the Earth’s crust: Advances in the World Stress Map project. Geol. Soc., London, Special Publications, 212, 101-116.
Soumaya, A., BenAyed, N., Delvaux, D. & Mohamed, G., 2015. Spatial variation of Present-day stress field and tectonic regime in Tunisia and surroundings from formal inversion of focal mechanisms: geodynamic implications for Central Mediterranean. Tectonics, 34, 1154-1180. doi: 10.1002/2015TC003895.
Steacy, S., Gomberg, J. & Cocco, M., 2005. Introduction to special section: Stress transfer, earthquake triggering, and time-dependent seismic hazard. J. Geophys. Res., 110, B05S01. doi: 10.1029/2005JB003692.
Tortorici, L., Monaco, C., Tansi, C. & Cocina, O., 1995. Recent and active tectonics in the Calabrian arc (Southern Italy). Tectonophys., 243, 37-55.
Vigneresse, J.-L., Tikoff, B. & Améglio, L., 1999. Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons. Tectonophys., 302, 203-234.
Zoback, M.L., 1992. First- and second-order patterns of stress in the lithosphere: the world stress map project. J. Geophys. Res., 97, B8, 11,703-11,728.
Zoback, M.L. & Zoback, M., 1989. Tectonic stress field of the conterminous United States. In: L.C. Pakiser, W.D. Mooney (Eds.), Geophysical Framework of the Continental United States. Geol. Soc. Am. Mem, Boulder, Colorado, 523-539.