SIMULATIONS OF SEISMIC ACTIVITY IN THE CORINTH GULF, GREECE, FAULT SYSTEM


R. Console
R. Carluccio
E. Papadimitriou
V. Karakostas
Résumé

The characteristic earthquake hypothesis is not strongly supported by observational data because of the relatively short duration of historical and even paleoseismological records. For instance, for the Corinth Gulf Fault System (CGFS), historical information on strong earthquakes exist for at least two thousand years, but they can be considered complete for M > 6.0 only for the latest 300 years, and therefore only few characteristic earthquakes are reported for individual fault segments. The use of a physics-based earthquake simulator has allowed the production of catalogues lasting 100,000 years and containing more than 500,000 events of magnitudes > 4.0. Our simulation algorithm is based on several physical elements, such as an average slip rate due to tectonic loading for every single segment in the investigated fault system, the process of rupture growth and termination, and interaction between earthquake sources, including small magnitude events. The application of our simulation algorithm to the CGFS provided realistic features in time, space and magnitude behaviour of the seismicity. These features include longterm periodicity of strong earthquakes, short-term clustering of both strong and smaller events, and a realistic earthquake magnitude distribution departing from the Gutenberg-Richter distribution in the moderate and higher magnitude range.

Article Details
  • Rubrique
  • Seismology
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Ambraseys, N., 2009. Earthquakes in the Mediterranean and Middle East: a multidisciplinary study
of seismicity up to 1900, Cambridge University Press, 947 pp., ISBN 978 0521 87292 8.
Armijo, R., Meyer, B., King, G.C.P., Rigo, A. and Papanastassiou, D., 1996. Quaternary evolution
of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean,
Geophys. J. Int., 126, 11-53.
Baker, C., Hatzfeld, D., Lyon-Caen, H., Papadimitriou, E. and Rigo, A., 1997. Earthquake
mechanisms of the Adriatic Sea and western Greece: implications for the oceanic subductioncontinental
collision transition, Geophys. J. Intern., 131, 559-594.
Bernard, P., Briole, P., Meyer, B., Lyon-Caen, H., Gomez, J.M., Tiberi, C., Berge, C., Cattin, R.,
Hatzfeld, D., Lachet, C., Lebrun, B., Deschamps, A., Courboulex, F., Larroque, C., Rigo, A.,
Massonnet, D., Papadimitriou, P., Kassaras, J., Diagourtas, D., Makropoulos, K., Veis, G.,
Papazisi, E., Mitsakaki, C., Karakostas, V., Papadimitriou, E., Papanastassiou, D., Chouliaras,
M. and Stavrakakis, G., 1997. The Ms=6.2, June 15, 1995 Aigion earthquake (Greece):
evidence for low angle normal faulting in the Corinth rift, J. Seismology, 1, 131-150.
Billiris, H., Paradissis, D., Veis, G., England, P., Featherstone, W., Parsons, B., Cross, P., Rands, P.,
Rayson, M., Sellers, P., Ashkenazi, V., Davison, M., Jackson, J. and Ambraseys, N., 1991.
Geodetic determination of tectonic deformation in central Greece from 1900 to 1988, Nature,
, 124-129.
Briole, P., Rigo, A., Lyon-Caen, H., Ruegg, J.C., Papazissi, K., Mitsakaki, C., Balodimou, A., Veis,
G., Hatzfeld, D. and Deschamps, A., 2000. Active deformation of the Corinth rift, Greece:
Results from repeated Global Positioning surveys between 1990 and 1995, J. Geophys. Res.,
, 25605-25625.
Choussianitis, K., Ganas, A. and Gianniou, M., 2013. Kinematic interpretation of present-day crustal
deformation in central Greece from continuous GPS measurements, J. Geodynamics, 71, 1-
Clarke, P.J., Paradisis, D., Briole, O., England, P.C., Parsons, B.E., Billiris, H., Veis, G. and Ruegg,
J.C., 1997. Geodetic estimate of seismic hazard in the Gulf of Korinthos, Geophys. Res. Lett.,
, 1303-1306.
Console, R., Falcone, G., Karakostas, V., Murru, M., Papadimitriou, E. and Rhoades, D., 2013.
Renewal models and coseismic stress transfer in the Corinth Gulf, Greece, fault system, J.
Geophys. Res., 118, 3655-3673, doi: 10.1002/jgrb.50277.
Console, R., Carluccio, R., Papadimitriou, E. and Karakostas, V., 2015. Synthetic earthquake
catalogs simulating seismic activity in the Corinth Gulf, Greece, fault system, J. Geoph. Res.,
, 1, 326-343, doi: 10.1002/2014JB011765.
Davies, R., England, P., Parsons, B., Billiris, H., Paradisis, D. and Veis, G., 1997. Geodetic strain
of Greece in the interval 1892-1992, J. Geophys. Res., 102, 24,571-24,588.
Field, E.H., 2007. A summary of previous Working Groups on California Earthquake Probabilities,
Bull. Seismol. Soc. Am., 97, 1033-1053.
Field, E.H. and Page, M.T., 2011. Estimating earthquake-rupture rates on a fault or fault system,
Bull. Seismol. Soc. Am., 101(1), 79-92.
Hatzfeld, D., Pedotti, G., Hatzidimitriou, P. and Makropoulos, K., 1990. The strain pattern in the
western Hellenic arc deduced from a microearthquake survey, Geophys. J. Int., 101, 181-202.
Hatzfeld, D., Kementzetzidou, D., Karakostas, V., Ziazia, M., Nothard, S., Diagourtas, D.,
Deschamps, A., Karakaisis, G., Papadimitriou, P., Scordilis, M., Smith, R., Voulgarsi, N.,
Kiratzi, G., Makropoulos, K., Bouin, M.P. and Bernard, P., 1996. The Galaxidi earthquake
sequence of November 18, 1992: a possible geometrical barrier within the normal fault
system of the Gulf of Corinth (Greece), Bull. Seism. Soc. Am., 86, 1987-1991.
Hatzfeld, D., Karakostas, V., Ziazia, M., Kassaras, I., Papadimitriou, E., Makropoulos, K., Voulgaris,
N. and Papaioannou, Ch., 2000. Microseismicity and faulting geometry in the Gulf of Corinth,
Geophys. J. Intern., 141, 438-456.
Jackson, J.A., 1987. Active continental deformation and regional metamorphism, Phil. Trans. R.
Soc. Lond., A321, 47-66.
Jackson, J.A. and McKenzie, D.P., 1988. The relationship between plate motions and seismic tensors,
and the rate of active deformation in the Mediterranean and Middle East, Geophys. Journal,
, 45-73.
Jackson, J.A, and White, N.J., 1989. Normal faulting in the upper continental crust: observations
from regions of active extension, J. Struct. Geol., 11, 15-36.
McKenzie, D., 1978. Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and
surrounding regions, Geophys. J. R. Astr. Soc., 55, 217-254.
Papazachos, B.C. and Papazachou, C., 2003. The earthquakes of Greece, Ziti Publ., Thessaloniki,
Greece, 317 pp.
Parsons, T., 2012. Paleoseismic interevent times interpreted for an unsegmented earthquake rupture
forecast, Geophys. Res. Lett., 99, L13302, doi: 10.1029/2012GL052275.
Reid, H.F., 1910. The mechanics of the earthquake, the California earthquake of April 18, 1906:
report of the State Earthquake Investigation Commission, publication no. 87, Carnegie
Institution of Washington, II, 192 pp.
Rigo, A., Lyon-Caen, H., Armijo, R., Deschamps, A., Hatzfeld, D., Makropoulos, K., Papadimitriou,
P. and Kassaras, I., 1996. Microseismicity study in the western part of the Gulf of Corinth
(Greece): Implications for large-scale normal faulting mechanisms, Geophys. J. Int., 126,
-688.
Richards-Dinger, K. and Dieterich, J.H., 2012. RSQSim earthquake simulator, Seism. Res. Lett., 6,
-990, doi: 10.1785/0220120105.
Schwartz, D.P. and Coppersmith, K.J., 1984. Fault behaviour and characteristic earthquakes:
examples from the Wasatch and San Andreas Fault Zones, J. Geophys. Res., 89, 5681-5698.
Shimazaki, K and Nakata, T., 1980. Time-predictable recurrence model for large earthquakes,
Geophys. Res. Lett., 7, 279-282.
Taymaz, T., Jackson, J. and McKenzie, D., 1991. Active tectonics of the north and central Aegean,
Geophys. J. Int., 106, 433-490.
Tullis, T.E., 2012. Preface to the Focused Issue on Earthquake Simulators, Seism. Res. Lett., 83, 6,
-958.
Ward, S.N., 2012. ALLCAL Earthquake Simulator, Seism. Res. Lett., 83, 964-972.
Weldon, R.J., Fumal, T.E., Biasi, G.P. and Scharer, K.M., 2005. Past and future earthquakes on the
San Andreas fault, Science, 308, 5724, 966-967, doi: 10.1126/science.1111707.
WGCEP, Working Group on California Earthquake Probabilities, 2008. The Uniform California
Earthquake Rupture Forecast, Version 2 (UCERF 2), USGS Open File Re
Articles les plus lus par le même auteur ou la même autrice