Robust Satellite Techniques for mapping thermal anomalies possibly related to seismic activity of March 2021, Thessaly Earthquakes.


Maria Kouli
https://orcid.org/0000-0001-6724-3793
Sofia Peleli
https://orcid.org/0000-0001-9871-9096
Vassilis Saltas
John P Makris
Filippos Vallianatos
Résumé
In recent years, there is a growing interest concerning the development of a multi-parametric system for earthquakes’ short term forecast identifying those parameters whose anomalous variations can be associated to the complex process of such events. In this context, the Robust Satellite Technique (RST) has been adopted herein with the aim to detect and map thermal anomalies probably related with the strong earthquake of M6.3 occurred near the city of Larissa, Thessaly on March 3rd 2021 10:16:07 UTC. For this purpose, 10 years (2012-2021) of daily Night-time Land Surface Temperature (LST) remotely sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS), were analyzed. Pixels characterized by statistically significant LST variations on a daily scale were interpreted as an indicator of variations in seismic activity. Quite intense (Signal/Noise ratio > 2.5) and rare, spatially extensive and time persistent, TIR signal transients were identified, appearing twenty five days before the Thessaly main shock (pre-seismic anomalies: February 6th, February 11th March 1st), the day of the main earthquake (co-seismic anomaly) and after the main shock (post-seismic anomalies: March 4th, 10th and 17th). The final dataset of thermal anomalies was combined with geological and structural data of the area of interest, such as active faults, composite seismogenic sources, earthquake epicenter and topography in order to perform preliminary spatial analysis.
Article Details
  • Rubrique
  • Remote Sensing and GIS
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Aguilar-Lome J., Espinoza-Villar R., J.C. Espinoza, J. Rojas-Acuña, B.L. Willems & W.M. Leyva-Molina, 2019. Elevation-dependent warming of land surface temperatures in the Andes assessed using MODIS LST time series (2000–2017). Int J Appl Earth Obs., 77, pp 119-128 https://doi.org/10.1016/j.jag.2018.12.013
Aliano C., Corrado R., Filizzola C., Genzano N., Pergola N. & V. Tramutoli, 2008a. Robust TIR satellite techniques for monitoring earthquake active regions: limits, main achievements and perspectives. Ann Geophys., 51, 303-317 https://doi.org/10.4401/ag-3050
Aliano C., Corrado R., Filizzola C., Pergola N. & Tramutoli V., 2008b. Robust satellite techniques (RST) for the thermal monitoring of earthquake prone areas: the case of Umbria-Marche October, 1997 seismic events. Ann Geophys., 51, 451-459 https://doi.org/10.4401/ag-3025
Anderson M. & Kustas W., 2008. Thermal remote sensing of drought and evapotranspiration. EOS T Am Geophys Un., 89 pp. 233-234 https://doi.org/10.1029/2008EO260001
Anderson M.C., Allen R.G., Morse A., Kustas W.P., 2012. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ, 122, pp 50-65 https://doi.org/10.1016/j.rse.2011.08.025
Athanasiadou, L., Psomiadis, E., & Stamatis, G. 2020. Thermal Remote Sensing for Water Outflows Detection and Determination of the Role of Lineaments in Underground Hydrodynamics of Evia Island, Central Greece. Bulletin of the Geological Society of Greece, 56(1), 100-132. https://doi.org/10.12681/bgsg.20948
Athanassiou A., 2002. Neogene and Quaternary mammal faunas of Thessaly. Annales Géologiques des PaysHelléniques, XXXIX (A), 279–293.
Brunsell N.A. & Gillies R.R., 2003. Determination of scaling characteristics of AVHRR data with wavelets: Application to SGP97. Int. J. Remote Sens., 24, pp 2945-2957 https://doi.org/10.1080/01431160210155983
Caputo R. and Pavlides S., 2013. The Greek Database of Seismogenic Sources (GreDaSS), version 2.0.0: A compilation of potential seismogenic sources (Mw > 5.5) in the Aegean Region. doi: 10.15160/unife/gredass/0200.
Caputo R., Bravard J.-P., Helly B., 1994. The Pliocene-Quaternary tecto-sedimentary evolution of the Larissa Plain (Eastern Thessaly, Greece). Geodinamica Acta, 7, pp. 57-85 https://doi.org/10.1080/09853111.1994.11105267
Caputo R., Pavlides S., 1993. Late Cainozoic geodynamic evolution of Thessaly and surroundings (central-northern Greece). Tectonophysics, 223, pp. 339-362 https://doi.org/10.1016/0040-1951(93)90144-9
Caputo R., Piscitelli S. , Oliveto A. , Rizzo E. , Lapenna V., 2003. The use of electrical resistivity tomography in active tectonics. Examples from the Tyrnavos Basin, Greece. J. Geodyn., 36 (1–2), pp. 19-35 10.1016/S0264-3707(03)00036-X
Caputo, R. 1990. Geological and structural study of the recent and active brittle deformation of the Neogene-Quaternary basins of Thessaly (Greece). In: Scientific Annals, Vol. 12, Aristotle University of Thessaloniki, Thessaloniki.
Christman Z., Rogan J., Eastman J.R. & Turner B.L., 2016. Distinguishing Land Change from Natural Variability and Uncertainty in Central Mexico with MODIS EVI, TRMM Precipitation, and MODIS LST Data. Remote Sens., 8, pp 478 https://doi.org/10.3390/rs8060478
Conti L., Picozza P. and Sotgiu A., 2021. A Critical Review of Ground Based Observations of Earthquake Precursors, Front. Earth Sci., 06 July 2021, https://doi.org/10.3389/feart.2021.676766
Eleftheriou A., Filizzola C., Genzano N., Lacava T., Lisi M., Paciello R., Pergola N., Vallianatos F. & Tramutoli V., 2016a. Long-term RST analysis of anomalous TIR sequences in relation with earthquakes occurred in Greece in the period 2004–2013. Pure Appl. Geophys., 173, pp 285-303 https://doi.org/10.1007/s00024-015-1116-8
Eleftheriou D., Kiaghidis K., Kalmintzis G., Kalea A., Bantasis C., Koumadoraki P., Spathara M.E., Tsolaki A., Tzampazidou M.I., Gemitzi A., 2016b. Determination of annual and seasonal daytime and nighttime trends of MODIS LST over Greece-climate change implications. Sci. Total Environ., 616, pp 937-947 doi: 10.1016/j.scitotenv.2017.10.226
Filizzola C., Pergola N., Pietrapertosa C. & Tramutoli V., 2004. Robust satellite techniques for seismically active areas monitoring: a sensitivity analysis on September 7, 1999 Athens's earthquake. Phys. Chem. Earth, PT A/B/C, 29, pp 517-527 DOI: 10.1016/j.pce.2003.11.019
Ganas, A., Lagios, E., Petropoulos, G. and Psiloglou, B., 2010. Thermal imaging of Nisyros volcano (Aegean Sea) using ASTER data: estimation of radiative heat flux, International Journal of Remote Sensing, 31: 15, 4033 — 4047 https://doi.org/10.1080/01431160903140837
Ganas, Α., Oikonomou, Ι. & Tsimi, C., 2013. NOAfaults: a digital database for active faults in Greece, Bulletin of the Geological Society of Greece, 47: 2, 518 – 530 https://doi.org/10.12681/bgsg.11079
Ganas, A., Valkaniotis, S., Briole, P., Serpetsidaki, A., Kapetanidis, V., Karasante, I., Kassaras, I., Papathanassiou, G., Karamitros, I., Tsironi, V., Elias, P., Sarhosis, V., Karakonstantis, A., Konstantakopoulou, E., Papadimitriou, P., & Sokos, E., 2021. Domino-style earthquakes along blind normal faults in Northern Thessaly (Greece): kinematic evidence from field observations, seismology, SAR interferometry and GNSS. Bulletin of the Geological Society of Greece, 58, 37-86. https://doi.org/10.12681/bgsg.27102
Genzano N., Filizzola C., Lisi M., Pergola N., Tramutoli V., 2020. Toward the development of a multi parametric system for a short-term assessment of the seismic hazard in Italy. Annals of Geophysics, 63-5, PA550 https://doi.org/10.4401/ag-8227
Karnieli A., Agam N., Pinker R.T., Anderson M., Imhoff M.L., Gutman G.G., Panof N. & Goldberg A., 2010. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Climate, 23, pp 618-633. https://doi.org/10.1175/2009JCLI2900.1
Keramitsoglou I., Chris T., Kiranoudis C.T., Ceriola G., Weng Q., Rajasekar U., 2011. Identification and analysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sens. Environ., 115, pp 3080-3090. https://doi.org/10.1016/j.rse.2011.06.014
Kustas W. & Anderson M., 2009. Advances in thermal infrared remote sensing for land surface modeling. Agr. Forest Meteorol., 149, pp 2071-2081. https://doi.org/10.1016/j.agrformet.2009.05.016
Li Z.L., Tang B.H., Wu H., Ren H., Yan G., Wan Z. & Sobrino J.A., 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ., 131, pp 14-37 https://doi.org/10.1016/j.rse.2012.12.008
Lillesand T. M., Kiefer R. W. & Chipman J. W.,1987. Remote sensing and image interpretation. John Wiley & Sons, New York.
Martinelli G., 2020. Previous, Current, and Future Trends in Research into Earthquake Precursors in Geofluids, Geosciences, 10, 189; https://doi.org/10.3390/geosciences10050189
Mavroulis, S., Mavrouli, M., Carydis, P., Agorastos, K., & Lekkas, E., 2021. The March 2021 Thessaly earthquakes and their impact through the prism of a multi-hazard approach in disaster management. Bulletin of the Geological Society of Greece, 58, 1-36. https://doi.org/10.12681/bgsg.26852
Pavlidou E., van der Meijde M., van der Werff H. and Hecker C., 2019, Time Series Analysis of Land Surface Temperatures in 20 Earthquake Cases Worldwide, Remote Sensing, 11, 61; doi:10.3390/rs11010061
Peleli, S., Kouli, M., Marchese, F., Lacava, T., Vallianatos, F., Tramutoli, V., 2021. Monitoring temporal variations in the geothermal activity of Miocene Lesvos volcanic field using remote sensing techniques and MODIS – LST imagery. International Journal of Applied Earth Observation and Geoinformation, 95, 102251. https://doi.org/10.1016/j.jag.2020.102251
Pulinets S. & Ouzounov D., 2011. Lithosphere–atmosphere–ionosphere coupling (LAIC) model–an unified concept for earthquake precursors validation J. Asian Earth Sci. 41 371–82. https://doi.org/10.1016/j.jseaes.2010.03.005
Scambos T. A., Campbell G. G., Pope A., Haran T., Muto A., Lazzara M., Reijmer C.H. and van den Broeke M.R., 2018. Ultralow surface temperatures in East Antarctica from satellite thermal infrared mapping: The coldest places on Earth Geophys Res Lett., 45, pp 6124–6133 https://doi.org/10.1029/2018GL078133
Tramutoli V., 2007. Robust Satellite Techniques (RST) for Natural and Environmental Hazards Monitoring and Mitigation: Theory and Applications. Int. Work. Anal. Multi-temporal Remote Sens. Images. IEEE, pp 1–6 10.1109/MULTITEMP.2007.4293057
Tramutoli V., Di Bello G., Pergola N. & Piscitelli S., 2001. Robust satellite techniques for remote sensing of seismically active areas. Ann di Geofis., 44, pp 295–312 https://doi.org/10.4401/ag-3596
Tramutoli V., Cuomo V., Filizzola C., Pergola N. & Pietrapertosa C., 2005. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (Izmit) earthquake, August 17, 1999. Remote Sens Environ., 96, pp 409-426 10.1016/j.rse.2005.04.006
Vallianatos F., Triantis D., Tzanis A., Anastasiadis C., Stavrakas I., 2004. Electric earthquake precursors: from laboratory results to field observations, Physics & Chemistry of the Earth, 29, 339-351. DOI: 10.1016/j.pce.2003.12.003
Vassilopoulou S., Sakkas V., Wegmuller U., Capes R. 2013. Long Term and Seasonal Ground Deformation Monitoring of Larissa Plain (Central Greece) by Persistent Scattering Interferometry, Cent. Eur. J. Geosci., 5(1), pp 61-76. https://doi.org/10.2478/s13533-012-0115-x
Vollmer M., Möllmann K.P., 2017. Infrared thermal imaging: fundamentals, research and applications, John Wiley & Sons, 2nd Edition. ISBN: 978-3-527-41351-5
Wan Z., 2013. MODIS Land Surface Temperature products user’s guide. https://icess.eri.ucsb.edu/modis/LstUsrGuide/usrguide.html
Williamson S. N., Hik D. S., Gamon J. A., Kavanaugh J. L. and Koh S., 2013. Evaluating cloud contamination in clear-sky MODIS Terra daytime land surface temperatures using ground-based meteorology station observations, J. Clim., 26(5), 1551–1560. https://doi.org/10.1175/JCLI-D-12-00250.1
Zhang Y., Jiang Z., Huang H., FanG Y., Mu X. and Cheng X., 2014. Thermal Anomalies Detection before 2013 Songyuan earthquake using MODIS LST data, IGARSS 2014, doi: 10.1109/IGARSS.2014.6947110
Articles les plus lus par le même auteur ou la même autrice