| More

Simulation of Coastal Processes affecting pH with Impacts on Carbon and Nutrient Biogeochemistry

Views: 422 Downloads: 297
NATALIA KAPETANAKI (http://orcid.org/0000-0003-0739-851X), EVANGELIA KRASAKOPOULOU, ELENI STATHOPOULOU, ALEXANDRA PAVLIDOU, SOULTANA ZERVOUDAKI, MANOS DASSENAKIS, MICHAEL SCOULLOS
NATALIA KAPETANAKI, EVANGELIA KRASAKOPOULOU, ELENI STATHOPOULOU, ALEXANDRA PAVLIDOU, SOULTANA ZERVOUDAKI, MANOS DASSENAKIS, MICHAEL SCOULLOS

Abstract


Naturally occurring microbial decomposition of organic matter (OM) in coastal marine environments cause increased acidity in deeper layers similar or even exceeding the future predictions for global ocean acidification (OA). Experimental studies in coastal areas characterized by increased inputs of OM and nutrients, coping with intermittent hypoxic/anoxic conditions, provide better understanding of the mechanisms affecting nutrients and carbon biogeochemistry under the emerging effects of coastal pH decrease. Laboratory CO2-manipulated microcosm experiments were conducted using seawater and surface sediment collected from the deepest part of Elefsis Bay (Saronikos Gulf, Eastern Mediterranean) focusing to study the co-evolution of processes affected by the decline of dissolved oxygen and pH induced by (a) OM remineralization and (b) the future anthropogenic increase of atmospheric CO2. Under more acidified conditions, a significant increase of total alkalinity was observed partially attributed to the sedimentary carbonate dissolution and the reactive nitrogen species shift towards ammonium. Νitrate and nitrite decline, in parallel with ammonium increase, demonstrated a deceleration of ammonium oxidation processes along with decrease in nitrate production. The decreased DIN:DIP ratio, the prevalence of organic nutrient species against the inorganic ones, the observations of constrained DON degradation and nitrate production decline and the higher DOC concentrations revealed the possible inhibition of OM decomposition under lower pH values. Finally, our results highlight the need for detailed studies of the carbonate system in coastal areas dominated by hypoxic/anoxic conditions, accompanied by other biogeochemical parameters and properly designed experiments to elucidate the processes sequence or alterations due to pH reduction.


Full Text:

PDF

References


Andersson, A., Bates N., Mackenzie, F., 2007. Dissolution of Carbonate Sediments under Rising pCO2 and Ocean Acidification: Observations from Devil’s Hole, Bermuda. Aquatic Geochemistry, 13, 237-264.

Aparicio, F.L., Nieto-Cid, M., Borrull, E., Calvo, E., Pelejero, C., et al., 2016. Eutrophication and acidification: Do they induce changes in the dissolved organic matter dynamics in the coastal Mediterranean Sea?. Science of the Total Environment, 563-564, 179-189.

Apostolaki, E., Holmer, M., Marbá, N., Karakassis, I., 2010. Degrading seagrass (Posidonia oceanica) ecosystems: a source of dissolved matter in the Mediterranean. Hydrobiologia, 639, 13-23.

Barker Jorgensen, B., Kasten, S., 2006. Sulfur cycling and methane oxidation. p. 271-310. In: Marine Geochemistry, Springer, Berlin Heidelberg, 574 p.p.

Beman ,M., Chow, C., King, A., Feng, Y., Fuhrman, J. et al., 2011. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proceedings of the National Academy of Science, 108, 208-213.

Borges, A., Gypens, N., 2010. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnology and Oceanography, 55 (1), 346-353.

Cai, W., Hu, X., Huang, W., Murrel, M., Lehrter, J. et al., 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience, 4, 766-770, DOI: 10.1038/ngeo1297.

Caldeira, K., Wickett, M., 2005. Ocean Model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research, 110, 1-12, DOI: 10.1029/2004JC002671.

Cantoni, C., Luchetta, A., Celio, M., Cozzi, S., Raicich, F., 2012. Carbonate system variability in the Gulf of Trieste (North Adriatic Sea). Estuarine, Coastal and Shelf Science, 115, 51-62, http://dx.doi.org/10.1016/j.ecss.2012.07.006.

Carpenter, J., (1965). "The Accuracy of the Winkler Method for Dissolved Oxygen Analysis." Limnology and Oceanography.

Chin, W.C., Orellana, M.V., Verdugo, P., 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature, 391, 568-572. http://dx.doi.org/10.1038/35345.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V. et al., 2013. Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA.

Dickson, A.G., 1990. Standard potential of the reaction: AgCI(s) + 1/2H2(g) = Ag(s) + HCI(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. Journal of Chemical Thermodynamics, 22, 113-127.

Dickson, A.G., Sabine, C.L., Christian, J.R (Eds.), 2007. Guide to best practices for ocean CO2 measurements. North Pacific Marine Science Organization, Special Publication 3, Sidney, British Columbia, 191 pp.

Dortch, Q., 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Marine Ecology Progress Series, 61, 183-201.

Duarte, C., Hendriks, I., Moore, T., Olsen, Y., Steckbauer A, et al., 2013. Is Ocean Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on Seawater pH. Estuaries and Coasts, 36, 221-236.

Feely, R., Aline, S., Newton, J., Sabine, C., Warner, M. et al. 2010. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science, 88, 442-449.

Flecha, S., Pérez, F.F., García-Lafuente, J., Sammartino, S., Ríos, A., Huertas, I.E., 2015. Trends of pH decrease in the Mediterranean Sea through high frequency observational data: indication of ocean acidification in the basin. Scientific Reports, 5, 16770. http://dx.doi.org/10.1038/srep16770

Friligos, N., 1982. Some Consequences of the Decomposition of Organic Matter in the Elefsis Bay, an Anoxic Basin. Marine Pollution Bulletin, 13 (3), 103-106.

Friligos, N., Barbetseas, S., 1990. Water masses and eutrophication in a Greek anoxic marine bay. Toxicological & Environmental Chemistry, 28 (1), 11-23.

Gattuso, J.P., Lavigne, H., Epitalon, J.M., 2014. Seawater Carbonate Chemistry with R Package ‘seacarb’. https://cran.r-project.org/web/packages/seacarb/index.html (Accessed 11 April 2017)

Ge, C., Chai, Y., Wang, H., Kan, M., 2016. Ocean acidification: One potential driver of phosphorus eutrophication. Marine Pollution Bulletin, 115 (1-2), 149-153.

Grasshoff, K. Kremling, K. Ehrhardt, M., 1999. Methods of Seawater Analysis, Wiley VCH, 577 pp.

Gruber, N., 2011. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philosophical Transactions of the Royal Society of London, 369, 1980-1996.

Hagens, M., Slomp, C., Meysmann, F.J.R., Seitaj, D., Harlay, J. et al., 2015. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin. Biogeosciences, 12, 1561-1583.

Hassoun, A., Gemayel, E., Krasakopoulou, E., Goyet, C., Abboud-Abi Saab, M. et al., 2015. Acidification of the Mediterranean Sea from anthropogenic carbon penetration. Deep-Sea Research, 1 (102), 1-15.

Hee, C.A., Pease, T.K., Alperin, M.J., Martens, C.S., 2001. Dissolved organic carbon production and consumption in anoxic marine sediments: a pulsed-tracer experiment. Limnology and Oceanography, 46, 1908–1920.

Hernández-Ayón, J.M., Zirino, A., Dickson, A., Camiro-Vargas, T., Valenzuela-Espinoza, E., 2007. Estimating the contribution of organic bases from microalgae to the titration alkalinity in coastal seawaters. Limnology and Oceanography, Methods 5, 225-232.

Hofmann, A., Peltzer, E., Walz, P., Brewer, P., 2011. Hypoxia by degrees: Establishing definitions for a changing ocean. Deep-Sea Research, 58, 1212-1226.

Howes, E., Stemmann, L., Assailly, C., Irisson, J., Dima, M. et al., 2015. Pteropod time series from the North Western Mediterranean (1967-2003): impacts of pH and climate variability. Marine Ecology Progress Series, 531, 193-206.

Hu, X., Cai, W.J., 2011. An assessment of ocean margin anaerobic processes on oceanic alkalinity budget. Global Biogeochemical Cycles, GB 3003, 1-11.

Huesemann, M., Skillman, A., Crecelius, E., 2002. The inhibition of marine nitrification by ocean disposal of carbon dioxide. Marine Pollution Bulletin, 44, 142-148.

Hulth, S., Aller, R., Gilbert, F., 1999. Coupled anoxic nitrification/manganese reduction in marine sediments. Geochimica et Cosmochimica Acta, 63 (1), 49-66.

Ignatiades, L., Gkotsis.-Skretas, O. 2010. A Review on Toxic and Harmful Algae in Greek Coastal Waters (E. Mediterranean Sea). Toxins, 2 (5), 1019-1037.

Ingrosso, G., Giani, M., Cibic, T., Karuza, A., Kralj, M. et al., 2016a. Carbonate chemistry dynamics and biological processes along a river–sea gradient (Gulf of Trieste, northern Adriatic Sea). Journal of Marine Systems, 155, 35-49.

Ingrosso, G., Giani, M., Comici, C., Kralj, M., Piacentino, S. et al., 2016b. Drivers of the carbonate system seasonal variations in a Mediterranean gulf. Estuarine, Coastal and Shelf Science, 168, 58-70.

Kapsenberg, L., Alliouane, S., Gazeau, F., Mousseau, L., Gattuso, J.P., 2017. Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea. Ocean Science, 13, 411-416.

Karageorgis, A.P., Katsanevakis, S., Kaberi, H., 2009. Use of enrichment factors for the assessment of heavy metal contamination in the sediments of Koumoundourou Lake, Greece. Water Air Soil Pollution, 204, 243-258.

Kitidis, V., Laverock, B., McNeill, L., Beesley, A., Cummings, D. et al., 2011. Impact of ocean acidification on benthic and water column ammonia oxidation. Geophysical research Letters, 38, 1-5.

Krumins, V., Gehlen, M., Arndt, S., Van Cappellen, P., Regnier, P., 2013. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change. Biogeosciences, 10, 371-398.

Kulinski, K., Schneider, B., Hammer, K., Machulik, U., Schulz-Bull, D. 2014. The influence of dissolved organic matter on the acid–base system of the Baltic Sea. Journal of Marine Systems, 132, 106-115.

Laverock, B., Kitidis, V., Tait, K., Gilbert, J., Osborn, A. et al., 2014. Bioturbation determines the response of benthic ammonia-oxidizing microorganisms to ocean acidification. Philosophical Transactions of the Royal Society of London, 368 (B), 1-13.

Lee K., Tae-Wook K., Byrne R.H., Millero F.J., Feely R.A., Liu Y-M, 2010. The universal ratio of the boron to chlorinity for the North Pacific and North Atlantoc oceans. Geochimica et Cosmochimica Acta 74, 1801-1811.

Le Quéré, C., Moriarty, R., Andrew, R.M., Canadell, J.G., Sitch S. et al., 2015. Global Carbon Budget, Earth System Science Data, 7, 349-396, DOI:10.5194/essd-7-349-2015.

Luchetta, A., Cantoni, C., Catalano, G. 2010. New observations of CO2-induced acidification in the northern Adriatic Sea over the last quarter century. Journal of Chemical Ecology, 26, 1-17.

Lueker, T.J., Dickson, A.G., Keeling, C.D., 2000. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Marine Chemistry, 70, 105-119.

Moncheva, S., Gotsis-Skreta,s O., Pagou, K., Krastev, A., 2001. Phytoplankton Blooms in Black Sea and Mediterranean Coastal Ecosystems Subjected to Anthropogenic Eutrophication: Similarities and Differences. Estuarine, Coastal and Shelf Science, 53, 281-295.

Pavlidou, A., Kontoyiannis, H., Anagnostou, Ch., Siokou–Frangou, I., Pagou, K. et al., 2013. Biogeochemical Characteristics in the Elefsis Bay (Aegean Sea, Eastern Mediterranean) in Relation to Anoxia and Climate Changes, p. 161-202, Chemical Structure of Pelagic Redox Interfaces: Observation and Modeling, Yakushev. E., Springer-Verlag Berlin Heidelberg.

Pérez, F., Fraga, F., 1987a. A precise and rapid analytical procedure for alkalinity determination. Marine Chemistry, 21, 169-182.

Pérez F. F., Fraga F., 1987b. Association constant of fluoride and hydrogen ions in seawater. Marine Chemistry, 21, 161-168.

Pérez, F., Rios, A., Rellan, T., Alvarez, M., 2000. Improvements in a fast Potentiometric Seawater Alkalinity Determination. Ciencias Marinas, 26 (003), 463-478.

Riebesell, U., Fabry, V.J., Hansson, L., Gattuso, J-P., 2010. Guide to best practices for ocean acidification research and data reporting. Luxembourg, Publications Office of the European Union, 259 pp.

Rousselaki, E., Pavlidou, A., Michalopoulos, P., Kaberi, H., 2014. Nutrient fluxes in a hypoxic marine environment of East Mediterranean. p.2123. In: Proceedings of the Goldschmidt Conference 2014, California, 8-13 June 2014, Sacramento, California.

Schneider, A., Tanhua, T., Körtzinger, A., Wallace, D.W.R., 2010. High anthropogenic carbon content in the eastern Mediterranean. Journal of Geophysical Research, 115 (C12), 1-11, DOI: 10.1029/2010JC006171.

Scoullos, M., 1979. Chemical Studies of the Gulf of Elefsis, Greece. PhD thesis, University of Liverpool, Dept. Oceanography, 328 p.p.

Scoullos, M.,1983. Nitrogen micronutrients in an intermittently anoxic basin. p. 139-143.In: Proceedings of VIes Journées d'études sur les pollutions marines en Méditerranée, Cannes, France 2-4 décembre 1982, Secrétariat général de la C.I.E.S.M., 1983.

Scoullos, M., Rilley, J., 1978. Water circulation in the Gulf of Elefsis, Greece. Thalassia Jugoslavica, 14 (3/4), 357-370.

Solorzano, L., 1969. Determination of Ammonia in Natural Waters by the Phenolhypochlorite method, Limnology and Oceanography, 14 (5), 799-801.

Strong, A., Kroeker, K., Teneva, L., Mease, L.A., Kelly, P., 2014. "Ocean Acidification 2.0: Managing our Changing Coastal Ocean Chemistry." Bioscience, 64 (7), 581-592.

Thomas, H., Schiettecatte, L., Suykens, K., Kone, Y., Shadwick, E. et al., 2009. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences, 6, 267-274.

Valderrama, J., 1981. The Simultaneous Analysis of Total Nitrogen and Total Phosphorus in Natural Waters. Marine Chemistry, 10, 109-122.

Wallace, R., Baumann, H., Grear, J., Aller, R., Gobler, R., 2014. Coastal ocean acidification: The other eutrophication problem. Estuarine, Coastal and Shelf Science, 148, 1-13.

Widdicombe, S., Dashfield, S., McNeil, C., Needham, H., Beesly, A. et al., 2009. Effects of CO2 induced seawater acidification on infaunal diversity and sediment nutrient fluxes. Marine Ecological Progress Series, 379 (59), 59-75.


Refbacks

  • There are currently no refbacks.