The impact of LNG offshore terminal on sea temperature and sea currents in the northern Adriatic Sea


Published: Jun 20, 2023
Keywords:
LNG terminal marine environment sea temperature sea currents ROMS model the Adriatic Sea
GORANA JELIĆ MRČELIĆ
MAJDA JURIĆ
NASTJENJKA SUPIĆ
MATHIEU DUTOUR SIKIRIĆ
Abstract

The aim of this paper is to simulate the impact of a potential offshore LNG terminal on sea temperature (in autumn and spring/ summer) and sea currents (in autumn/winter) at three different depths (at the sea surface, at 25 m depth and at the seabed) in the northern Adriatic Sea from 14 November 2015 to 06 August 2016 using the Regional Ocean Modelling System (ROMS) model. The location of the potential offshore LNG terminal Istria (in the northern Adriatic Sea) was selected using the visual PROMETHEE method. The potential LNG terminal uses seawater for LNG heating and the seawater cooled to a temperature of 9°C returns to the marine environment. Although the differences in sea temperature with and without the discharge fit within normal temperature ranges, the simulations show that the discharge changed the speed and direction of sea currents at the sea surface not only in the wider northern Adriatic, but in the entire Adriatic. This is probably due to the specific circulation in the Adriatic, where cold water affects the geostrophic balance, an important part of the circulation field that depends on density (a function of salinity and temperature). Atmospheric conditions in the broader vicinity of the LNG terminal would also be affected by redistribution of air-sea fluxes due to changes in surface temperature. Changes in circulation would alter environmental conditions by redistributing nutrients, oxygen, etc. Further multi-year simulations of changes in the circulation system are needed, but other physical parameters (density, salinity, river inflow...) should also be included in the simulations to determine the cumulative impact of a potential LNG terminal on the marine environment.

Article Details
  • Section
  • Research Article
Downloads
Download data is not yet available.
References
Agarwal, R., Rainey, T.J., Rahman, S.M.A., Steinberg, T., Perrons, R.K. et al., 2017. LNG Regasification Terminals: The Role of Geography and Meteorology on Technology Choices. Energies, 10 (12), 2152.
Akbari, E., Alavipanah, S. K., Jeihouni, M., Hajeb, M., Haase, D. et al., 2017. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods. Water, 9 (12), 936.
Aneziris, O.N., Papazoglou, I.A., Konstantinidou, M., Nivolianitou, Z., 2014. Integrated risk assessment for LNG terminals. Journal of Loss Prevention in the Process Industries, 27, 23-35.
Artegiani, A., Bregant, D. Paschini, E., Russo, A., 1997. The Adriatic Sea General Circulation. Part II: Baroclinic Circulation Structure. Journal of Physical Oceanography, 27 (8), 1515-1532.
British Petroleum, 2020. BP Statistical Review of World Energy. https://www.bp.com/content/dam/bp/business-sites/ en/global/corporate/pdfs/energy-economics/statistical-review/ bp-stats-review-2020-full-report.pdf (Accessed 23 October 2020).
British Petroleum, 2016. BP Statistical Review of World Energy. https://www.bp.com/content/dam/bp/pdf/energy- economics/statistical-review2016/bpstatistical-review- of-world-energy-2016-full-report.pdf (Accessed 23 October 2020).
Budgell, W.P., 2005. Numerical simulation of ice-ocean variability in the Barents Sea region. Ocean Dynamics, 55, 370-387.
Chan, A., Hartline, J., Hurley, J.R., Struzziery, L., 2004. Evaluation of Liquefied Natural Gas Receiving Terminals for Southern California. http://trapdoor.bren.ucsb.edu/research/ 2004Group_Projects/lng/lng_final.pdf (Accessed 23 October 2020).
Ciglenečki, I., Paliaga, P., Budiša, A., Čanković, M., Dautović, T.J. et al., 2021. Dissolved organic carbon accumulation during a bloom of invasive gelatinous zooplankton Mnemiopsis leidyi in the northern Adriatic Sea, case of the anomalous summer in 2017. Journal of marine systems, 222, 1-19.
Cushman-Roisin, B., Gačić, M., Poulain, P.M., Artegiani, A., 2001. Physical Oceanography of the Adriatic Sea: Past, Present and Future. Kluwer Academic Publishing, Dordrecht, 304 pp.
Danovaro, R., Boero, F., 2019. Italian Seas. p. 283-306. In: World Seas: An Environmental Evaluation Volume I: Europe, the Americas and West Africa. Sheppard, C. (Eds). Academic Press, Cambridge.
Degobbis, D., Gilmartin, M., 1990. Nitrogen, phosphorus, and biogenic silicon budgets for the Northern Adriatic Sea. Oceanologica Acta, 13, 31-45.
Degobbis, D., Precali, R., Ivančić, I., Smodlaka, N., Fuks, D. et al., 2000. Long-term changes in the Northern Adriatic ecosystem related to anthropogenic eutrophication. International Journal of Environment and Pollution, 13, 495-533.
Di Lorenzo, E., 2003. Seasonal dynamics of the surface circulation in the southern California Current System. Deep Sea Research Part II: Topical Studies in Oceanography, 50 (14-16), 2371-2388.
Dinniman, M.S., Klinck, J.M. Smith Jr., W.O., 2003. Cross shelf exchange in a model of the Ross Sea circulation and biogeochemistry. Deep Sea Research Part II: Topical Studies in Oceanography, 50 (14-16), 3103-3120.
Djakovac, T., Supić, N., Bernardi Aubry, F., Degobbis, D., Giani, M., 2015. Mechanisms of hypoxia frequency changes in the northern Adriatic Sea during the period 1972-2012. Journal of marine systems, 141, 179-189.
Dunić, N., Vilibić, I., Šepić, J., Mihanović, H., Sevault, F., et al., 2019. Performance of multi-decadal ocean simulations in the Adriatic Sea. Ocean Modelling, 134, 84-109.
Dunić, N., Supić, N., Sevault, F., Vilibić, I., 2022. The northern Adriatic circulation regimes in the future winter climate. Climate dynamics, 1-14.
Haidvogel, D.B., Arango, H.G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P. et al., 2000. Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates, Dynamics of Atmospheres and Oceans, 32 (3-4), 239-281.
He, T., Chong, Z. R. Zheng, J., Ju, Y., Linga, P., 2019. LNG cold energy utilization: Prospects and challenges. Energy, 170, 557-568.
Hillel, D., 2005. Water, Properties. p. 290-300. In: Encyclopedia of Soils in the Environment. Hillel, D. (Eds). Academic Press, Cambridge. IGU International Gas Union, 2020. World LNG report 2020. https://www.igu.org/app/uploads-wp/2020/04/2020-World- LNG-Report.pdf (Accessed 23 October 2020).
Ivančić, I., Fuks, D., Najdek, M., Blažina, M., Descovi, M. et al., 2010. Long-term changes in heterotrophic prokaryotes abundance and growth characteristics in the Northern Adriatic Sea. Journal of Marine Systems, 82, 206-216.
Janeković, I., Dutour Sikirić, M., Tomažić, I., Kuzmić, M., 2010. Hindcasting the Adriatic Sea surface temperature and salinity: A recent modelling experience. Geofizika, 27 (2), 85-100.
Janeković, I., Mihanović, H., Vilibić, I., Grcić, B., Ivatek-Šahdan, S. et al., 2020. Using multi-platform 4D-Var data assimilation to improve modelling of Adriatic Sea dynamics. Ocean Modelling, 146, 101538.
Jelavić, V., Kovačić, G., Jerman Vrančić, M., Mužek, Z., 2017. Studija o utjecaju na okoliš izmjena zahvata prihvatnog terminal za UPP na otoku Krku uvođenjem faze plutajućeg terminala za prihvat, skladištenje i uplinjavanje UPP-a. https://mzoe.gov.hr/UserDocsImages/ARHIVA%20DOKUMENATA/ ARHIVA%20---%20PUO/2017/studija_o_ utjecaju_na_okolis_36.pdf (Accessed 23 October 2020).
Kraus, R., Supić, N., 2015. Sea dynamics impacts on the macroaggregates: A case study of the 1997 mucilage event in the northern Adriatic, Progress in Oceanography, 138, 249-267.
Kraus, R., Supić, N., Lučić, D., Njire, J., 2015. Impact of winter oceanographic conditions on zooplankton abundance in Northern Adriatic with implications on Adriatic anchovy stock prognosis. Estuarine, coastal and shelf science, 167, 56-66.
Kraus, R., Supić, N., Precali, R., 2016. Factors favouring large organic production in the Northern Adriatic: Towards the Northern Adriatic empirical ecological model. Ocean Science, 12, 19-37.
Krajcar, V., 2003. Climatology of geostrophic currents in the Northern Adriatic. Geofizika, 20, 105-114.
Lyons, D.M., Supić, N., Smodlaka, N., 2007. Geostrophic circulation patterns in the northeastern Adriatic Sea and the effects of air-sea coupling: May-September 2003. Journal of Geophysical Research, 112, C03S08.
Krajcar, V., Supić, N., Kuzmić, M., 2003. Referencing geostrophic velocities at a northern Adriatic section, Il Nuovo Cimento, 26, 493-502.
Malačič, V., Faganeli, J., Malej, A., 2008. Environmental impact of LNG terminals in the Gulf of Trieste (Northern Adriatic). p. 361-381. In: Integration of Information for Environmental Security, NATO Science for Peace and Security Series C: Environmental Security.
Coskun, H. G., Cigizoglu, H. K., Maktav, M. D. (Eds), Springer, New York. Marchesiello, P., McWilliams, J.C., Shchepetkin, A., 2003. Equilibrium structure and dynamics of the California Current System, Journal of Physical Oceanography, 33, 753-783. Mathewson, J.H., 2001. Oceanography, Chemical. p. 99-115. In: Encyclopedia of Physical Science and Technology. Meyers, R. (Eds), Academic Press, Cambridge. McKinney, F.K., 2007. The Northern Adriatic Ecosystem. Columbia University Press. New York, 328 pp. Orlić, M., Gačić, M., La Violette, P.E., 1992. The currents and circulation of the Adriatic Sea. Oceanologica Acta, 15, 109-124.
Orlić, S., Najdek, M., Supić, N., Ivančić, I., Fuks, D. et al., 2013. Structure and variability of microbial community at transect crossing a double gyre structure (north-eastern Adriatic Sea). Aquatic microbial ecology, 69, 193-203.
Paliaga, P., Budiša, A. Dautović, J., Djakovac, T., Dutour- Sikirić, M.A. et al., 2021. Microbial response to the presence of invasive ctenophore Mnemiopsis leidyi in the coastal waters of the Northeastern Adriatic. Estuarine, coastal and shelf science, 259, 107459.
Paltrinieri, N., Tugnoli, A., Cozzani, V., 2015. Hazard identification for innovative LNG regasification technologies. Reliability Engineering and System Safety, 137, 18-28.
Papadopoulou, M.P., Antoniou, C., 2014. Environmental impact assessment methodological framework for liquefied natural gas terminal and transport network planning. Energy Policy, 68, 306-319.
Peliz, A., Dubert, J., Haidvogel, D.B., Le Cann B., 2003. Generation and unstable evolution of a density-driven Eastern Poleward Current: The Iberian Poleward Current. Journal of Geophysical Research, 108 (C8), 3268.
Penzar, B., Penzar, I., Orlić, M., 2001. Vrijeme i klima hrvatskog Jadrana. Hrvatski hidrografski institut, Zagreb, 258 pp.
Ramos, M., Lopez Droguett, E., Ramos Martins, M., Souza, H., 2014. Comparison of Possible Consequences of LNG Leakages in Offshore and Onshore Terminals: the Case of the Port of Suape in the NorthEastern Brazil. International Journal of Modelling and Simulation for the Petroleum Industry, 8 (1), 40-48.
Poulain P.-M., 2001. Adriatic Sea surface circulation as derived from drifter data between 1990 and 1999. Journal of Marine Systems, 29, 1-4.
Semaskaite, V., Bogdevicius, M., Paulauskiene, T., Uebe, J., Filina-Dawidowicz, L., 2022. Improvement of Regasification Process Efficiency for Floating Storage Regasification Unit. Journal of Marine Science and Engineering, 10 (7), 897.
Supić, N., Ivančić, I., 2002. Hidrographic conditions in the Adriatic in relation to surface fluxes and the Po river discharge rates (1966-1992). Periodicum Biologorum, 104 (2), 203-209.
Supić, N., Orlić, M., 1999. Seasonal and interannual variability of the northern Adriatic surface fluxes. Journal of Marine Systems,, 20, 205-229.
Supić, N., Orlić, M., Degobbis, D., 2000. Istrian Coastal Countercurrent and its Year-to-Year Variability. Estuarine, Coastal and Shelf Science, 50, 385-397.
Supić, N., Orlić, M., Degobbis, D., 2003. Istrian Coastal Countercurrent in the year 1997- Il Nuovo Cimento, 26, 117-131.
Trincardi, F., Cattaneo, A., Asioli, A., Correggiari, A., Langone, L., 1996. Stratigraphy of the late-Quaternary deposits in the Central Adriatic basin and the record of short-term climatic events. Memorie-Istituto Italiano di idrobiologia, 55, 39-70.
UNCTAD, 2019. Review of Maritime Transport 2019. https:// unctad.org/system/files/official-document/rmt2019_en.pdf (Accessed 23 October 2020).
Viličić, D., 2014. Specifična oceanološka svojstva hrvatskog dijela Jadrana. Hrvatske vode, 22 (90), 297-314.
Vilibić, I., Orlić, M., 2002. Adriatic water masses, their rates of formation and transport through the Otranto Strait. Deep Sea Research Part I Oceanographic Research Papers, 49 (8), 1321-1340.
Vilibić, I., Mihanović, H., Janeković, I., Šepić, J., 2016. Modelling the formation of dense water in the Northern Adriatic: Sensitivity studies. Ocean modelling, 101, 17-29.
Warner, J.C, Sherwood, C.R., Arango, H.G., Signell R.P., 2005a. Performance of four Turbulence Closure Methods Implemented using a Generic Length Scale Method. Ocean Modelling, 8, 81-113.
Warner, J.C., Geyer, W.R., Lerczak J.A., 2005b. Numerical modelling of an estuary: A comprehensive skill assessment, Journal of Geophysical Research, 110, C05001.
Wilkin, J.L., Arango, H.G., Haidvogel, D.B., Lichtenwalner, C.S, Durski, S.M. et al., 2005. A regional Ocean Modelling System for the Long-term Ecosystem Observatory. Journal of Geophysical Research, 110, C06S91.
Most read articles by the same author(s)