Patterns of Posidonia oceanica (L.) Delile tannin cells and leaf characteristics according to environmental conditions


Veröffentlicht: Oct 24, 2022
SALIMA BOUMAZA
AMINA SENGOUGA
DJIHAD GASMI
ALI MISRAOUI
GERARD PERGENT
RACHID SEMROUD
Abstract

There is little research on the distribution and evolution of tannin cells, specialized in the sequestration of phenolic compounds, in the leaves of P. oceanica, depending on the developmental stage and environmental conditions. This work aims to evaluate the density of tannin cells along the vertical axis of leaves (basal, middle, and apical regions) at four sites corresponding to an anthropogenic gradient estimated from the ecological status of P. oceanica meadows: Moderate (El Djamila), Good (Bou Ismaïl) and very good (Kouali and Aïn Tagouraït). Leaf thickness and width were measured in each region to express the density of tannin cells per mm². Data analysis shows that the density of tannin cells decreases with increasing leaf age and that the highest densities are recorded in the apical regions, especially when the leaf apex is entire. The density of leaf tannin cells is significantly correlated (R = -0.977, p = 0.022) with the Ecological Quality Ratio (EQR) corresponding to the ecological status of P. oceanica meadows and reflecting the impact of environmental pressures. This sensitivity to environmental conditions opens interesting prospects for using tannin cell density as a descriptor (environmental biomarker) in coastal monitoring programs based on P. oceanica meadows.

Article Details
  • Rubrik
  • Research Article
Downloads
Keine Nutzungsdaten vorhanden.
Literaturhinweise
Agostini, S., Desjobert, J.M., Pergent, G., 1998. Distribution of phenolic compounds in the seagrass Posidonia oceanica. Photochemistry, 48 (4), 611-617.
Arnold, T.M., Tanner, C.E., Rothen, M., Bullington, J., 2008. Wound-induced accumulations of condensed tannins in turtlegrass, Thalassia testudinum. Aquatic Botany, 89 (4), 27-33.
Arnold, T.M., Targett, N.M., 2002. Marine tannins: the importance of a mechanistic framework for predicting ecological roles. Journal of Chemical Ecology, 28, 1919-1934.
Astudillo-Pascual, M., Domínguez, I, Aguilera, P.A., Garrido Frenich, A., 2021. New Phenolic Compounds in Posidonia oceanica Seagrass: A Comprehensive Array Using High Resolution Mass Spectrometry. Plants, 10 (5), 1-14.
Boumaza, S., Boudefoua, N., Boumaza, R., Semroud, R., 2014. Effects of urban effluents on spatial structure, morphology and total phenols of Posidonia oceanica: Comparison with a reference site. Journal of Experimental Marine Biology and Ecology, 457, 113-119.
Boumaza, S., Mokeddem, Z., Hamoul, N., Semroud, R., 2012. Effects of disturbances caused by coastal discharges on phenolic compounds in the seagrass Posidonia oceanica. p. 34. In: 3rd Mediterranean Seagrass Workshop, Essaouira, Morocco, 28 may-1 June, 2012.
Cannac, M., Ferrat, L., Pergent-Martini, C., Pergent, G., Pasqualini, V., 2006. Effect of fish farming on flavonoids in Posidonia oceanica. Science of the Total Environment, 370, 91-98.
Cariello, L., Zanetti, L., 1979. Distribution of chicoric acid during leaf development of Posidonia oceanica. Botanica Marina, 23, 359-360.
Castellano, G., Tena, J., Torrens, F., 2012. Classification of phenolic compounds by chemical structural indicators and its relation to antioxidant properties of Posidonia oceanica L. Delile. MATCH Communications in Mathematical and in Computer Chemistry, 67, 231-250.
Chowdhary, V., Alooparampil, S., Pandya, R.V., Tank, J.G., 2021. Physiological Function of Phenolic Compounds in Plant Defence System. p. 185-206. In: Phenolic Compounds-Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications. Badris, F.A. (Ed.). IntechOpen Publishers, London.
Colombo, P.M., Rascio, N., Cinelli, F., 1983. Posidonia oceanica (L.) Delile: a structural study of the photosynthetic apparatus. Marine Ecology, 4 (2), 133-145.
Conti, M.E., Iacobucci, M., 2008. Marine organisms as biomonitors. p. 81-110. In: Biological Monitoring: Theory and Applications. The Sustainable World. Conti, M.E. (Ed.).WIT Press Publishers, Southampton.
Cozza, R., Chiappetta, A., Petrarulo, M., Salimonti, A., Rende, F. et al., 2004. Cytophysiological features of Posidonia oceanica as putative markers of environmental conditions. Chemical Ecology, 20 (3), 215-223.
Cozza, R., Iaquinta, A., Cozza, D., Ruffolo, L., 2013. Trace metals in Posidonia oceanica in a coastal area of the Ionian Sea (Calabria, Italy). Open Journal of Ecology, 3 (2), 102- 108.
Cozza, R., Rende, F., Ferrari, M., Bruno, L., Pacenza, M. et al., 2019. Biomonitoring of Posidonia oceanica beds by a multiscale approach. Aquatic Botany, 156, 14-24.
Cuny, P., Serve, L., Jupin, H., Boudouresque, C.F., 1995. Water soluble phenolic compounds of the marine phanerogam Posidonia oceanica in Mediterranean area colonised by the introduced chlorophyte Caulerpa taxifolia. Aquatic Botany, 52 (3), 237-242.
Dalla Via, J., Sturmbauer, C., Schönweger G., Sötz E., Mathekowitsch, S. et al., 1998. Light gradients and meadow structure in Posidonia oceanica: ecomorphological and functional correlates. Marine Ecology Progress Service, 163, 267-278.
de los Santos, C.B., Vicencio-Rammsy, B., Lepoint, G., Remy, F., Bouma, T.J. et al., 2016. Ontogenic variation and effect of collection procedure on leaf biomechanical properties of Mediterranean seagrass Posidonia oceanica (L.) Delile. Marine Ecology, 37 (4), 750-759.
de Villèle, X., Verlaque, M.,1995. Changes and degradation in a Posidonia oceanica bedinvaded by the introduced tropical alga Caulerpa taxifolia in the north western Mediterranean. Botanica Marina, 38, 79-87.
Dumay, O., Costa, J., Desjobert, M. J., Pergent, G., 2004. Variations in the concentration of phenolic compounds in the seagrass Posidonia oceanica under conditions of competition. Phytochemistry, 65 (24), 3211-3220.
Enríquez, S., 2005. Light absorption efficiency and the package effect in the leaves of the seagrass Thalassia testudinum. Marine Ecology Progress Service, 289, 141-150.
Fernández-Torquemada, Y., Díaz-Valdés, M., Izquierdo- Muñoz, A., Sánchez-Lizaso, J.L., Ramos-Esplá, A.A., 2020. Spatial and Temporal Variability of Posidonia oceanica Monitoring Indicators, Valencian Community, Spain. Water, 12 (11), 1-11.
Ferrat, L., Pergent-Martini, C., Roméo, M., 2003. Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquatic Toxicology, 65 (2), 187-204.
Ferrat, L., Wyllie-Echeverria, S., Cates Rex, G., Pergent-Martini, C., Pergent, G., 2012. Posidonia oceanica and Zostera marina as Potential Biomarkers of Heavy Metal Contamination in Coastal Systems.p. 125-140. In: Ecological Water Quality - Water Treatment and Reuse. Voudouris, K. (Ed.). IntechOpen Publishers, London.
Gnisci, V., de Martiis, S. C., Belmonte, A., Micheli, C., Piermattei, V. et al., 2020. Assessment of the ecological structure of Posidonia oceanica (L.) Delile on the northern coast of Lazio, Italy (central Tyrrhenian, Mediterranean). Italian Botanist, 9, 1-19.
Gobert, S., Sartoretto, S., Rico-Raimondino, V., Andral, B., Chery, A. et al., 2009. Assessment of the ecological status of Mediterranean French coastal waters as required by the Water Framework Directive using the Posidonia oceanica Rapid Easy Index: PREI. Marine Pollution Bulletin, 58 (11), 1727-1733.
Kuo, J., den Hartog, C., 2006. Seagrass morphology, anatomy and ultrastructure. p. 51-87. In: Seagrasses: Biology, Ecology and Conservation. Larkum, A.W.D., Orth, R.J., Duarte, C.M. (Eds). Springer Publishers, Dordrecht.
Lattanzio, V., 2013. Phenolic Compounds: Introduction. p. 1543-1579. In: Natural Products. Ramawat, K.G., Mérillon, J.M. (Eds). Springer-Verlag Publishers, Berlin-Heidelberg.
Leoni, V., Pasqualini, V., Pergent-Martini, C., Vela, A., Pergent, G., 2006. Morphological responses of Posidonia oceanica to experimental nutrient enrichment of the canopy water. Journal of Experimental Marine Biology and Ecology, 339 (1), 1-14.
Leoni, V., Pasqualini, V., Pergent-Martini, C., Vela, A., Pergent, G., 2007. Physiological responses of Posidonia oceanicto experimental nutrient enrichment of the canopy water. Journal of Experimental Marine Biology and Ecology, 349 (1), 73-83.
Mannino, A.M., Micheli, C., 2020. Ecological Function of Phenolic Compounds from Mediterranean Fucoid Algae and Seagrasses: An Overview on the Genus Cystoseira Sensu Lato and Posidonia oceanica (L.) Delile. Journal of Marine Science, 8 (1), 1-19.
Marbà, N., Krause-Jensen, D., Alcoverro, T., Birk, S., Pedersen, A. et al., 2012. Diversity of European seagrass indicators: patterns within and across regions. Hydrobiologia, 704 (1), 265-278.
Martínez-Crego, B., Vergés, A.; Romero, J., Alcoverro, T., 2008. Selection of multiple seagrass indicators for environmental biomonitoring. Marine Ecology Progress Series, 361, 93-109.
Micheli, C., Paganin, P., Peirano, A., Caye, G., Meinesz, A. et al., 2005. Genetic variability of P. oceanica (L.) Delile in relation to local factors and biogeographic patterns. Aquatic Botany, 82 (3), 210-221.
Migliore, L., Rotini, A., Randazzo, D., Albanese, N., Giallongo, A., 2007. Phenols content and 2-D electrophoresis protein pattern: a promising tool to monitor Posidonia meadows health state. BMC Ecology, 7, 1-8.
Paul, M., de los Santos, C.B., 2019. Variation in flexural, morphological, and biochemical leaf properties of eelgrass (Zostera marina) along the European Atlantic climate regions. Marine Biology, 166 (10), 1-12.
Pavia, H., Cervin, G., Lindgren, A., Åberg, P., 1997. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Marine Ecology Progress Series, 157, 139-146.
Pellegrini, L., Pellegrini, M., 1993. Ultrastructural differentiation of the tanniniferous cells in the marine phanerogam Posidonia oceanica (L.) Delile. Botanica Marina, 36, 179- 187.
Pergent, C., 1988. Variabilité de l’abondance des cellules à tanin dans les écailles de Posidonia oceanica. Rapports et procès-verbaux des réunions Commission internationale pour l’exploration scientifique de la Mer Méditerranée, 31.
Pergent, G., Boudouresque, C.F., Dumay, O., Pergent-Martini, C., Wyllie-Echeverria, S., 2008. Competition between the invasive macrophyte Caulerpa taxifolia and the seagrass Posidonia oceanica: contrasting strategies. BMC Ecology, 8 (1), 8-20.
Pergent-Martini, C., Leoni, V., Pasqualini, V. Ardizzone, G.D., Balestri, E. et al., 2005. Descriptors of Posidonia oceanica meadows: Use and application. Ecological Indicators, 5 (3), 213-230.
Personnic, S., Boudouresque, C.F., Astruch, P., Ballesteros, E., Blouet, S. et al., 2014. An Ecosystem-Based Approach to Assess the Status of a Mediterranean Ecosystem, the Posidonia oceanica seagrass Meadow. PloS One, 9 (6), 1-17.
Pratyusha, S., 2022. Phenolic Compounds in the Plant Development and Defence: An Overview. p. 1-16. In: Plant Stress Physiology- Perspectives in Agriculture. Hasanuzzaman, M., Nahar, K. (Eds). Intech Open Publishers, London.
Procaccini, G., Ruocco, M., Marín-Guirao, L., Dattolo, E., Brunet, C. et al., 2017. Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica. Science Report, 7 (1), 1-15.
Rhoades, D.F., 1979. Evolution of plant chemical defense against herbivores. In: Herbivores: Their interaction with secondary plant metabolites. Rosenthal, G.A., Janzen, D.H. (Eds). Academic Press Publishers, New York.
Romero, J., Martínez-Crego, B., Alcoverro, T., Pérez, M.A., 2007. Multivariate index based on the seagrass Posidonia oceanica (POMI) to assess ecological status of coastal waters under the Water Framework Directive (WFD). Marine Pollution Bulletin, 55 (1), 196-204.
Rotini, A., Anello, L., Di Bernardo, M., Giallongo, A., Valiante, L., 2013. Comparative analysis of bed density, total phenol content and protein expression pattern in Posidonia oceanica (L.) Delile. Open Journal of Ecology, 3 (6), 438-444.
Rotini, A., Micheli, C., Valiante, L., Migliore, L., 2011. Assessment of Posidonia oceanica (L.) Delile conservation status by standard and putative approaches: the case study of Santa Marinella meadow (Italy, W Mediterranean). Open Journal of Ecology, 1 (2), 48-56.
Ruocco, M., De Luca, P., Marín-Guirao, L., Procaccini, G., 2019. Differential leaf age-dependent thermal plasticity in the keystone seagrass Posidonia oceanica. Frontiers in Plant Science, 10, 1-17.
Schoenwaelder, M.E., 2001. The occurrence and cellular significance of physodes in brown algae. Phycologia, 41 (2), 125-139.
Schoenwaelder, M.E., Clayton, M.N., 1999. The presence of phenolic compounds in isolated cell walls of brown algae. Phycologia, 38 (3), 161-166.
Schubert, N., Freitas, C., Silva, N., Costa, M.M., Barrote, I. et al., 2018. Photoacclimation strategies in northeastern Atlantic seagrasses: Integrating responses across plant organizational levels. Science Report, 8 (1), 1-14.
Sengouga, A. Boumaza, S., Zerrouk, C., Misraoui, A., Semroud, R., 2019. Temporal Evolution of Ecological Status in Algerian Coastal Waters. p. 337-378. In: 14thInternational MEDCOAST Congress on Coastal and Marine Sciences, Engineering, Management & Conservation. Marmaris, Turkey, 22-26, October 2019. Publisher, Mediterranean Coastal Foundation (MEDCOAST 19), Ortaca, Mugla, Turkey.
Steinberg, P.D., 1984. Algal chemical defence against herbivores: allocation of phenolic compounds in the kelp Alaria marginata. Science, 223 (4634), 405-407.
Steinberg, P.D., 1986. Chemical defences and the susceptibility of tropical marine brown algae to herbivores. Oecologia, 69 (4), 628-630.
Steinberg, P.D., Edyvane, K., De Nys, R., Birdsey, R., Van Altena, I.A., 1991. Lack of avoidance of phenolic-rich brown algae by tropical herbivorous fishes. Marine Biology, 109 (2), 335-343.
Stiger, V., Deslandes, E., Payri, C.E., 2004. Phenolic contents of two brown algae, Turbinaria ornate and Sargassum mangarevense on Tahiti (French Polynesia): interspecific, onto- genic and spatio-temporal variations. Botanica Marina, 47, 402-409.
Top, S.M., Preston, C.M., Dukes, J.S., Tharayil, N., 2017. Climate influences the content and chemical composition of foliar tannins in green and senesced tissues of Quercus rubra. Front Plant Science, 8 (423), 1-12.
Van Alstyne, K.L., 1988. Herbivore grazing increases polyphenolic defences in the intertidal brown alga Fucus distichus. Ecology, 69 (3), 655-663.
Vergés, A., Becerro, M.A., Alcoverro, T., Romero, J., 2007a. Variation in multiple traits of vegetative and reproductive seagrass tissues influences plant-herbivore interactions. Oecologia, 151 (4), 675-686.
Vergés, A., Becerro, M.A., Alcoverro, T., Romero, J., 2007b. Experimental evidence of chemical deterrence against multiple herbivores in the seagrass Posidonia oceanica. Marine Ecology Progress Series, 343, 107-114.
Vergés, A., Pérez, M., Alcoverro, T., Romero, J., 2008. Compensation and resistance to herbivory in seagrasses: induced responses to simulated consumption by fish. Oecologia, 155, 751-760.
Vettori, D., Marjoribanks, T.I., 2021. Temporal variability and within-plant heterogeneity in blade biomechanics regulate flow-seagrass interactions of Zostera marina. Water Resources Research, 57 (3), 1-17. Waterman, P.G., Mole, S. (Eds.), 1994. Analysis of phenolic plant metabolites. Blackwell Scientific Publ., Oxford, Great Britain, 238 pp.
Yates, J.L., Peckol, P., 1993. Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology, 74, 1757-1766.
Yeshi, K., Crayn, D., Ritmejeryt, E., Wangchuk, P., 2022. Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. Molecules, 27, 313.
Am häufigsten gelesenen Artikel dieser/dieses Autor/in