Submarine vortices derived from natural gas hydrate conversion: a mechanism for ocean mixing
Περίληψη
We propose that the source water for some abyssal undular vortices cored by cool, low-salinity water identified at depths in excess of 2,500 m in the deepwater region of the Eastern Mediterranean Basin may be related to conversion of natural gas hydrate (NGH) in abyssal marine sediments. The conditions for extensive formation of NGH in the gas hydrate stability zones (GHSZ) of the upper seafloor sediments existed in this region during previous glacial episodes when colder water supported a thicker GHSZ. Seafloor warming during the most recent interglacial caused thinning of the GHSZ at its base and has driven endothermic NGH dissociation that would have released large volumes of low-salinity water and gas that would tend to pond below the base GHSZ. Periodically, trapped low-salinity water and gas would be released into the sea through the overlying sediments. Buoyant low-salinity water masses, supersaturated with gas and locally containing free gas would ascend and introduce a dynamic element into an otherwise generally static environment. As a result of the interaction of the rise of this buoyant plume and Coriolis acceleration the ascending mass would begin to rotate and form a vortex tube in midwater. NGH conversion within the seafloor introduces large coherent masses of low-salinity, lower-temperature water containing a buoyant free gas fraction from near-surface reservoirs into the abyssal depths even where there may only be a weak natural gas petroleum system.
Λεπτομέρειες άρθρου
- Πώς να δημιουργήσετε Αναφορές
-
BARNARD, A., MAX, M. D., & GUALDESI, L. (2017). Submarine vortices derived from natural gas hydrate conversion: a mechanism for ocean mixing. Mediterranean Marine Science, 18(2), 202–214. https://doi.org/10.12681/mms.1640
- Τεύχος
- Τόμ. 18 Αρ. 2 (2017)
- Ενότητα
- Research Article
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution Non-Commercial License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g. post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (preferably in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Αναφορές
Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A. et al., 2016. The prototype detection unit of the KM3NeT detector. The European Physical Journal, C 76, 1-12.
Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A. et al., 2014. Deep sea tests of a prototype of theKM3NeT digital optical module. The European Physical Journal, C 74, 3056.
Aloisi, G., Pierre, C., Rouchy, J.-M., Foucher, J.-P., Woodside, J., 2000. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth and Planetary Science Letters, 184, 321-338.
Archer, D., 2007. Methane hydrate stability and anthropogenic climate change. Biogeosciences Discussions, 4, 993-1057.
Aynutdinov, V., Kindin, V., Kiselev, S., Petrukhin, A., Potapov, G. et al., 1995. Present Status of the NESTOR Project, International Cosmic Ray Conference, p. 1076. BBC, 2009. HD: Super Slo-mo Surfer! - South Pacific - BBC Two https://www.youtube.com/watch?v=7BOhDaJH0m4 (25 January 2016).
Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V. et al., 2014. Temporal constraints on hydrate-controlled methane seepage off Svalbard. Science, 343, 284-287.
Biastoch, A., Treude, T., Rüpke, L.H., Riebesell, U., Roth, C. et al., 2011. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophysical Research Letters, 38.
Bindoff, N.L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J.M. et al., 2007. Observations: oceanic climate change and sea level. p. 385–432. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M.,
Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Boswell, R., Frye, M., Shelander, D., Shedd, W., McConnell, D.R. et al., 2012. Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green canyon 955, and Alaminos canyon 21: northern deepwater Gulf of Mexico. Marine and Petroleum Geology, 34, 134-149.
Bush, J.W., Woods, A.W., 1999. Vortex generation by line plumes in a rotating stratified fluid. Journal of Fluid Mechanics, 388, 289-313.
Carazzo, G., Kaminski, E., Tait, S., 2008. On the rise of turbulent plumes: Quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism. Journal of Geophysical Research: Solid Earth (1978–2012), 113,10.1029/2007JB005458.
Carey, S., Ballard, R., Bell, K.L., Bell, R.J., Connally, P. et al., 2014. Cold seeps associated with a submarine debris avalanche deposit at Kick’em Jenny volcano, Grenada (Lesser Antilles). Deep Sea Research Part I: Oceanographic Research Papers, 93, 156-160.
Chen, L., Sloan, E.D., Koh, C.A., Sum, A.K., 2013. Methane hydrate formation and dissociation on suspended gas bubbles in water. Journal of Chemical & Engineering Data, 59, 1045-1051.
Chierici, F., Favali, P., Beranzoli, L., De Santis, A., Embriaco, D. et al., 2012. NEMO-SN1 (Western Ionian Sea, off Eastern Sicily): a cabled abyssal observatory with tsunami early warning capability. p. 130-137. In: Proceedings 22nd International Off-shore and Polar Engineering Conference, International Society of Off-shore and Polar Engineers (ISOPE).
Clark, P.U., Tarasov, L., 2014. Closing the sea level budget at the Last Glacial Maximum. Proceedings of the National Academy of Sciences, 111, 15861-15862.
Colbo, K., Ross, T., Brown, C., Weber, T., 2014. A review of oceanographic applications of water column data from multibeam echosounders. Estuarine, Coastal and Shelf Science, 145, 41-56.
Dählmann, A., 2005. Gas hydrates in the Eastern Mediterranean: occurrence and biogeochemical environment compiled from detailed sampling of the Anaximander Mountains. Geophysical Research Abstracts, 7, 05176.
De Lange, G., Brumsack, H.-J., 1998. The occurrence of gas hydrates in Eastern Mediterranean mud dome structures as indicated by pore-water composition. Geological Society, London, Special Publications, 137, 167-175.
Dean, W.E., Kennett, J.P., Behl, R.J., Nicholson, C., Sorlien, C.C., 2015. Abrupt termination of Marine Isotope Stage 16 (Termination VII) at 631.5 ka in Santa Barbara Basin, California. Paleoceanography, 30, 1373-1390.
Della Vedova, B., Pellis, G., Camerlenghi, A., Foucher, J.- P., Harmegnies, F., 2003. Thermal history of deep‐sea sediments as a record of recent changes in the deep circulation of the eastern Mediterranean. Journal of Geophysical Research: Oceans (1978–2012,) 108, 10.1029/2002JC001402.
Dillon, W.P., Max, M.D., 2001. The US Atlantic continental margin; the best-known gas hydrate locality. p. 157-170 In: Natural Gas Hydrates: Occurrence, Distribution, and Detection. Paull, C.K., Dillon, W.P. (Eds). Springer, Washington, D.C.
Fairbanks, R.G., 1989. A 17, 000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637-642.
Feder, T., 2002. Deep-sea Km3 neutrino detector gets thumbs up. Physics Today, 55, 20-21.
Garcia-Pineda, O., MacDonald, I., Silva, M., Shedd, W., Asl, S.D. et al., 2015. Transience and persistence of natural hydrocarbon seepage in Mississippi Canyon, Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography, 129, 119-129.
Goodman, J.C., Collins, G.C., Marshall, J., Pierrehumbert, R.T., 2004. Hydrothermal plume dynamics on Europa: Implications for chaos formation. Journal of Geophysical Research, 109, 10.1029/2003JE002073. 212 Medit. Mar. Sci., 18/2, 2017, 202-214.
Griffiths, R., Killworth, P.D., Stern, M.E., 1982. A geostrophic instability of ocean currents. Journal of Fluid Mechanics, 117, 343-377.
Hautala, S.L., Solomon, E.A., Johnson, H.P., Harris, R.N., Miller, U.K., 2014. Dissociation of Cascadia margin gas hydrates in response to contemporary ocean warming. Geophysical Research Letters, 41, 8486-8494.
Hedstrom, K., Armi, L., 1988. An experimental study of homogeneous lenses in a stratified rotating fluid. Journal of Fluid Mechanics, 191, 535-556.
Hesse, R., 2003. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: What have we learned in the past decade? Earth-Science Reviews, 61, 149-179.
Holbrook, W.S., 2001. Seismic studies of the Blake Ridge: Implications for hydrate distribution, methane expulsion, and free gas dynamics. Natural gas hydrates, 235-256.
JOGMEC, 2013. Gas production from methane hydrate layers confirmed. http://www.jogmec.go.jp/english/news/release/ release0110.html
Katz, U.F., 2006a. KM3NeT: towards a km 3 Mediterranean neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 567, 457-461.
Katz, U.F., 2006b. Neutrino telescopy in the Mediterranean sea. Progress in Particle and Nuclear Physics, 57, 273-282.
Katz, U.F., KM3NeT-consortium, 2009. Status of the KM3NeT project. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 602, 40-46.
Kretschmer, K., Biastoch, A., Rüpke, L., Burwicz, E., 2015. Modeling the fate of methane hydrates under global warming. Global Biogeochemical Cycles, 29, 610-625.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. In: Proceedings of the National Academy of Sciences 111, 15296-15303. Levine, J.S., Haljasmaa, I., Lynn, R., Shaffer, F., Warzinski, R.P., 2015. Detection of Hydrates on Gas Bubbles during a Subsea Oil/Gas Leak, EPAct Technical Report Series. U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA,, p. 44.
Li, C., Huang, T., 2016. Simulation of gas bubbles with gas hydrates rising in deep water. Ocean Engineering, 112, 16-24.
Linke, P., Sommer, S., Rovelli, L., McGinnis, D.F., 2010. Physical limitations of dissolved methane fluxes: The role of bottom-boundary layer processes. Marine Geology, 272, 209-222.
Loncke, L., Mascle, J., Parties, F.S., 2004. Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (Eastern Mediterranean): geophysical evidences. Marine and Petroleum Geology, 21, 669-689.
Lykousis, V., Alexandri, S., Woodside, J., De Lange, G., Dählmann, A. et al., 2009. Mud volcanoes and gas hydrates in the Anaximander mountains (Eastern Mediterranean Sea). Marine and Petroleum Geology 26, 854-872.
Marinakis, D., Varotsis, N., Perissoratis, C., 2015. Gas hydrate dissociation affecting the permeability and consolidation behaviour of deep sea host sediment. Journal of Natural Gas Science and Engineering, 23, 55-62.
Max, M., Dillon, W.P., 1998. Oceanic methane hydrate: the character of the Blake Ridge hydrate stability zone, and the potential for methane extraction. Journal of Petroleum Geology, 21, 343-357.
Max, M., Johnson, A., 2011. Methane hydrate/clathrate conversion. Advances in Clean Hydrocarbon Fuel Processing: Science And Technology. Woodhead Publishing Series in Energy, 413-434.
Max, M.D., Johnson, A.H., 2012. NGH: A dynamic factor in deep water sediments & the geological record, AGU Fall Meeting, San Francisco.
Max, M.D., Johnson, A.H., 2016. Exploration and Production of Oceanic Natural Gas Hydrate: Critical Factors for Commercialization. Springer International Publishing.
Max, M.D., Johnson, A.H., Dillon, W.P., 2006. Economic geology of natural gas hydrate. Springer.
Mayer, L., Shor, A., Clarke, J.H., Piper, D., 1988. Dense biological communities at 3850 m on the Laurentian Fan and their relationship to the deposits of the 1929 Grand Banks earthquake. Deep Sea Research Part A. Oceanographic Research Papers, 35, 1235-1246.
McDougall, T.J., Feistel, R., Wright, D.G., Pawlowicz, R., Millero, F.J. et al., 2010. The international thermodynamic equation of seawater-2010: Calculation and use of thermodynamic properties, Manuals and Guides. UNESCO, Intergovernmental Oceanographic Comission, p. 196.
Mienert, J., Vanneste, M., Bünz, S., Andreassen, K., Haflidason, H. et al., 2005. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Marine and Petroleum Geology, 22, 233-244.
Pachauri, R., Reisinger, A., 2007. IPCC fourth assessment report. IPCC, Geneva, 2007.
Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W. et al., 2014. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. p. 151. In: Climate Change 2014. Meyer, R.P.a.L. (Ed),. Intergovernmental Panel on Climate Change, Geneva, Switzerland.
Paull, C., Borowski, W., Rodriguez, N., 1998. Marine gas hydrate inventory: preliminary results of ODP Leg 164 and implications for gas venting and slumping associated with the Blake Ridge gas hydrate field. Geological Society, London, Special Publications, 137, 153-160.
Paull, C.K., Matsumoto, R., Wallace, P.J., 1996. Leg 164 Overview. p. 5-12. In: Proceedings of the Ocean Drilling Program: Scientific Results. ODP.
Paull, C.K., Ussler, W., 2001. History and significance of gas sampling during DSDP and ODP drilling associated with gas hydrates. p. 53-65. In: Natural Gas Hydrates: Occurrence,Distribution, and Detection. American Geophysical Union. Paull, C.K., Dillon, W.P. (Eds). Washington, D. C.
Perissoratis, C., Ioakim, C., Alexandri, S., Woodside, J., Nomikou, P. et al., 2011. Thessaloniki mud volcano, the shallowest gas hydrate-bearing mud volcano in the Anaximander Mountains, Eastern Mediterranean. Journal of Geological Research, Article ID 247983, doi:10.1155/2011/247983.
Pfleger, D., Gomes, S., Gilbert, N., Wagner, H.-G., 1999. Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian–Eulerian Medit. Mar. Sci., 18/2, 2017, 202-214 213 modelling approach. Chemical Engineering Science, 54, 5091-5099.
Piattelli, P., NEMO-collaboration, 2005. The neutrino mediterranean observatory project. Nuclear Physics B-Proceedings Supplements, 143, 359-362.
Pierre, C., Rouchy, J.-M., 2004. Isotopic compositions of diagenetic dolomites in the Tortonian marls of the western Mediterranean margins: evidence of past gas hydrate formation and dissociation. Chemical Geology, 205, 469-484.
Post, V.E., Groen, J., Kooi, H., Person, M., Ge, S. et al., 2013. Offshore fresh groundwater reserves as a global phenomenon. Nature, 504, 71-78.
Praeg, D., Geletti, R., Wardell, N., Unnithan, V., Mascle, J. et al., 2011. The Mediterranean Sea: A natural laboratory to study gas hydrate dynamics? p. 8. In: Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom,.
Rehder, G., Brewer, P.W., Peltzer, E.T., Friederich, G., 2002. Enhanced lifetime of methane bubble streams within the deep ocean. Geophysical Research Letter,s 29, 21-24.
Rehder, G., Kirby, S.H., Durham, W.B., Stern, L.A., Peltzer, E.T. et al., 2004. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth. Geochimica et Cosmochimica Acta, 68, 285-292.
Rhein, M., Rintoul, S., Aoki, S., Campos, E., Chambers, D. et al., 2013. Chapter 3: Observations: Ocean. p. 255-316. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Riboulot, V., Thomas, Y., Berné, S., Jouet, G., Cattaneo, A., 2014. Control of Quaternary sea‐level changes on gas seeps. Geophysical Research Letters, 41, 4970-4977.
Rivetti, I., Fraschetti, S., Lionello, P., Zambianchi, E., Boero, F., 2014. Global Warming and Mass Mortalities of BenthicN Invertebrates in the Mediterranean Sea. PloS one, 9, e115655.
Roberts, H.H., Hardage, B.A., Shedd, W.W., Hunt Jr, J., 2006. Seafloor reflectivity-an important seismic property for interpreting fluid/gas expulsion geology and the presence of gas hydrate. The Leading Edge, 25, 620-628.
Robinson, K., Kackstaetter, U., Echohawk, B., 2015. The Origin of a Layer of Subcircular Mudflakes in the Ross Sandstone Formation of County Clare, Ireland, AGU Fall Meeting. AGU, San Francisco.
Römer, M., Riedel, M., Scherwath, M., Heesemann, M., Spence, G.D., 2016. Tidally controlled gas bubble emissions: A comprehensive study using long‐term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island. Geochemistry, Geophysics, Geosystems, 17, 3797-3814.
Rubino, A., Falcini, F., Zanchettin, D., Bouche, V., Salusti, E. et al., 2012. Abyssal undular vortices in the Eastern Mediterranean basin. Nature Communications, 3, 834.
Ruppel, C.D., Kessler, J.D., 2016. The Interaction of Climate Change and Methane Hydrates. Reviews of Geophysics 55, 10.1002/2016RG000534.
Ryan, W.B., 2009. Decoding the Mediterranean salinity crisis. Sedimentology, 56, 95-136.
Ryan, W.B., Carbotte, S.M., Coplan, J.O., O’Hara, S., Melkonian, A. et al., 2009. Global Multi‐Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, 10, 10.1029/2008GC002332.
Saffman, P.G., 1992. Vortex dynamics. Cambridge University Press. Sapienza, P., collaboration, N., 2005. A km 3 detector in the Mediterranean: status of NEMO. Nuclear Physics B-Proceedings Supplements, 145, 331-334.
Schmale, O., Leifer, I., Deimling, J.S.v., Stolle, C., Krause, S. et al., 2015. Bubble transport mechanism: indications for a gas bubble-mediated inoculation of benthic methanotrophs into the water column. Continental Shelf Research, 103, 70-78.
Schmid, M., Lorke, A., Dinkel, C., Tanyileke, G., Wüest, A., 2004. Double-diffusive convection in Lake Nyos, Cameroon. Deep Sea Research Part I: Oceanographic Research Papers, 51, 1097-1111.
Skarke, A., Ruppel, C., Kodis, M., Brothers, D., Lobecker, E., 2014. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nature Geoscience, 7, 657-661.
Smith, A.J., Mienert, J., Bünz, S., Greinert, J., 2014. Thermogenic methane injection via bubble transport into the upper Arctic Ocean from the hydrate‐charged Vestnesa Ridge, Svalbard. Geochemistry, Geophysics, Geosystems, 15, 1945-1959.
Socolofsky, S., Adams, E., 2002. Multi-phase plumes in uniform and stratified crossflow. Journal of Hydraulic Research, 40, 661-672.
Solomon, E.A., Kastner, M., MacDonald, I.R., Leifer, I., 2009. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico. Nature Geoscience, 2, 561-565.
Tudino, T., Bortoluzzi, G., Aliani, S., 2014. Shallow-water gaseohydrothermal plume studies after massive eruption at Panarea, Aeolian Islands, Italy. Journal of Marine Systems, 131, 1-9.
Vogt, P.R., Crane, K., Sundvor, E., Max, M.D., Pfirman, S.L., 1994. Methane-generated pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram Strait. Geology, 22, 255-258.
von Deimling, J.S., Linke, P., Schmidt, M., Rehder, G., 2015.Ongoing methane discharge at well site 22/4b (North Sea) and discovery of a spiral vortex bubble plume motion. Marine and Petroleum Geology, 68, 718-730.
Wang, L.K., Shammas, N.K., Selke, W.A., Aulenbach, D.B., 2010. Gas dissolution, release, and bubble formation in flotation systems, Flotation Technology. Springer, pp. 49-83.
Warzinski, R.P., Lynn, R., Haljasmaa, I., Leifer, I., Shaffer, F. et al., 2014. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models. Geophysical Research Letters, 41, 6841-6847.
Weber, T.C., Mayer, L., Jerram, K., Beaudoin, J., Rzhanov, Y. et al., 2014. Acoustic estimates of methane gas flux from the seabed in a 6000 km2 region in the Northern Gulf 214 Medit. Mar. Sci., 18/2, 2017, 202-214 of Mexico. Geochemistry, Geophysics, Geosystems, 15, 1911-1925.
Wilson, D.S., Leifer, I., Maillard, E., 2015. Megaplume bubble process visualization by 3D multibeam sonar mapping. Marine and Petroleum Geology, 68, 753-765.
Wood, W.T., Jung, W.-Y., 2008. Modeling the extent of Earth’s marine methane hydrate cryosphere. p. 6-10. In: Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008).
Xing, J., Spiess, V., 2015. Shallow gas transport and reservoirs in the vicinity of deeply rooted mud volcanoes in the central Black Sea. Marine Geology, 369, 67-78.
Yamamoto, S., Alcauskas, J.B., Crozier, T.E., 1976. Solubility of methane in distilled water and seawater. Journal of Chemical and Engineering Data, 21, 78-80.
You, K., Kneafsey, T.J., Flemings, P.B., Polito, P., Bryant, S.L., 2015. Salinity‐buffered methane hydrate formation and dissociation in gas‐rich systems. Journal of GeophysicalResearch: Solid Earth, 120, 643-661.