Temperature Effects on Growth Rates and Predation Loss of Bacterial Groups in Marine Ecosystems


Published: Feb 11, 2025
Keywords:
experimental warming CARD FISH bacterial phylogenetic groups growth rate grazing rate grazing preference
STEFANIJA ŠESTANOVIĆ
https://orcid.org/0000-0002-3356-3040
ANA VRDOLJAK TOMAŠ
https://orcid.org/0000-0002-2330-4600
MLADEN ŠOLIĆ
DANIJELA ŠANTIĆ
https://orcid.org/0000-0002-7396-5861
NATALIA BOJANIĆ
https://orcid.org/0000-0002-6191-7352
Abstract

This study investigated the effects of experimental warming on the major bacterial phylogenetic groups in the marine environment, focusing on their growth and grazing rates, phylogenetic community composition and grazing preferences. A series of growth and grazing experiments were performed in microcosms at a temperature increase of 3°C. The growth rates of all bacterial groups were enhanced by temperature increase. SAR11 and Roseobacter were particularly sensitive to temperature changes, while Gammaproteobacteria were the least affected. Protozoan grazing mainly affected fast-growing groups such as Roseobacter and Gammaproteobacteria, while slower-growing groups such as SAR11 were less affected. In most cases, the growth rates of the bacteria increased more with temperature than the grazing rates of predators. This indicates that temperature has a stronger influence on bacterial growth than on predator activity. At higher temperatures the grazing pressure of nanoflagellates (NF) on Roseobacter and Bacteroidetes increased while Gammaproteobacteria were almost exclusively grazed by ciliates (CIL). As a result, the dominant predator of certain groups and the composition of prey changed with temperature increase. The changes in bacterial community composition at higher temperatures were caused both by the direct effect of temperature on bacterial growth and by shifts in predator grazing preferences. Furthermore, our results suggest that bacterial growth and grazing behaviour of bacterial predators do not necessarily occur simultaneously at higher temperatures and highlight the importance of considering bacterial phylogenetic composition when predicting bacterial response to warming.

Article Details
  • Section
  • Research Article
Downloads
Download data is not yet available.
References
Allison, S.D., Martiny, J.B., 2008. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, 105 (supplement_1), 11512-11519.
Alonso, C., Pernthaler, J., 2006. Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environmental Microbiology, 8 (11), 2022-2030.
Alonso-Sáez, L., Gasol, J.M., 2007. Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in northwestern Mediterranean coastal waters. Applied and Environmental Microbiology, 73 (11), 3528-3535.
Amend A.S., Martiny, A.C., Allison, S.D., Berlemont, R., Goulden, M.L. et al., 2016. Microbial response to simulated global change is phylogenetically conserved and linked with functional potential. The ISME Journal, 10 (1), 109-118.
Anderson, M.J., 2017. Permutational multivariate analysis of variance (PERMANOVA). p. 1-15. In: Wiley StatsRef: Statistics reference online. N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, Teugels J.L. (Eds). John Wiley & Sons, Ltd., Hoboken, NJ.
Arandia‐Gorostidi, N., Huete‐Stauffer, T.M., Alonso‐Sáez, L., Morán, X.A., 2017. Testing the metabolic theory of ecology with marine bacteria: different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom. Environmental Microbiology, 19 (11), 4493-4505.
Arandia-Gorostidi, N., Alonso-Sáez, L., Stryhanyuk, H., Richnow, H.H., Morán, X.A.G. et al., 2020. Warming the phycosphere: Differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa. Environmental Microbiology, 22 (4), 1381-1396.
Baltar, F., Palovaara, J., Unrein, F., Catala, P., Horňák, K. et al., 2016. Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions. The ISME Journal, 10 (3), 568-581.
Batani, G., Pérez, G., Martínez de la Escalera, G., Piccini, C. Fazi, S., 2016. Competition and protist predation are important regulators of riverine bacterial community composition and size distribution. Journal of Freshwater Ecology, 31 (4), 609-623.
Bell, T., Bonsall, M.B., Buckling, A., Whiteley, A.S., Goodall, T. et al., 2010. Protists have divergent effects on bacterial diversity along a productivity gradient. Biology Letters, 6 (5), 639-642.
Bonilla-Findji, O., Herndl, G.J., Gattuso, J.P., Weinbauer, M.G., 2009. Viral and flagellate control of prokaryotic production and community structure in offshore Mediterranean waters. Applied and Environmental Microbiology, 75 (14), 4801-4812.
Buchan, A., González, J.M., Moran, M.A., 2005. Overview of the marine Roseobacter lineage. Applied and Environmental Microbiology, 71 (10), 5665-5677.
Calvo-Díaz, A., Franco-Vidal, L., Morán, X.A.G., 2014. Annual cycles of bacterioplankton biomass and production suggest a general switch between temperature and resource control in temperate coastal ecosystems. Journal of Plankton Research, 36 (3), 859.
Campbell, B.J., Yu, L., Heidelberg, J.F., Kirchman, D.L., 2011. Activity of abundant and rare bacteria in a coastal ocean. Proceedings of the National Academy of Sciences, 108 (31), 12776-12781.
Chesson, J., 1978. Measuring preference in selective predation. Journal of Animal Ecology, 47, 805-816.
Chesson, J., 1983. The estimation and analysis of preference and its relationship to foraging models. Ecology, 64, 1297-1304.
Christaki, U., Van Wambeke, F., Lefèvre, D., Lagaria, A., Prieur, L. et al., 2011a. Microbial food webs and metabolic state across oligotrophic waters of the Mediterranean Sea during summer. Biogeosciences, 8 (7),1839-1852.
Christaki, U., Courties, C., Massana, R., Catala, P., Lebaron, P. et al., 2011b. Optimized routine flow cytometric enumeration of heterotrophic flagellates using SYBR Green I. Limnology and Oceanography, 9 (8), 329-339.
Chust, G., Allen, J.I., Bopp, L., Schrum, C., Holt, J. et al., 2014. Biomass changes and trophic amplification of plankton in a warmer ocean. Global Change Biology, 20, 2124-2139.
Clarke, K.R., Gorley, R.N., 2015. Primer: User manual/tutorial. Primer-E Ltd, Plymouth, 296 pp. Clarke, K.R., Warwick, R.M., 2001. Change in marine communities: an approach to statistical analysis and interpretation. 2nd edition, Plymouth: Primer-E.
Cottrell, M.T., Kirchman, D.L., 2000. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology, 66 (4), 1692-1697.
Cottrell, M.T., Kirchman, D.L., 2004. Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquatic Microbial Ecology, 34, 139-149.
Courboulès, J., Mostajir, B., Trombetta, T., Mas, S., Vidussi, F., 2022. Warming disadvantages phytoplankton and benefits bacteria during a spring bloom in the Mediterranean Thau Lagoon. Frontiers in Marine Science, 9, 878938.
Dadon-Pilosof, A., Conley, K.R., Jacobi, Y., Haber, M., Lombard, F. et al., 2017. Surface properties of SAR11 bacteria facilitate grazing avoidance. Nature Microbiology, 2 (12), 1608-1615.
de la Cruz Barron, M., van Velzen, E., Klümper, U., Weitere, M., Berendonk, T.U. et al., 2023. Shifts from cooperative to individual-based predation defense determine microbial predator-prey dynamics. The ISME Journal, 17 (5), 775-785.
Eilers, H., Pernthaler, J., Amann, R., 2000. Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts. Applied and Environmental Microbiology, 66 (11), 4634-4640.
Falkowski, P.G., Fenchel, T., Delong, E.F., 2008. The microbial engines that drive Earth’s biogeochemical cycles. Science, 320 (5879), 1034-1039.
Fecskeová, L.K., Piwosz, K., Šantić, D., Šestanović, S., Tomaš, A.V. et al., 2021. Lineage-specific growth curves document large differences in response of individual groups of marine bacteria to the top-down and bottom-up controls. MSystems, 6 (5), e00934-21.
Fenchel, T., 1986. The ecology of heterotrophic microflagellates. Advances in Microbial Ecology, 57-97.
Ferguson, R.L., Buckley, E.N., Palumbo, A., 1984. Response of marine bacterioplankton to differential filtration and confinement. Applied and Environmental Microbiology, 47, 49-55.
Ferrera, I., Gasol, J.M., Sebastián, M., Hojerová, E., Koblížek, M., 2011. Comparison of growth rates of aerobic anoxygenic phototrophic bacteria and other bacterioplankton groups in coastal Mediterranean waters. Applied and Environmental Microbiology, 77 (21), 7451-7458.
Fuhrman, J.A., Hagström, Å., 2008. Bacterial and archaeal community structure and its patterns. p. 45-90. In: Microbial Ecology of the Oceans 2nd Edition, Kirchman D.L. (Ed.). Wiley-Liss, New York.
Giebel, H.A., Kalhoefer, D., Lemke, A., Thole, S., Gahl-Janssen, R. et al., 2011. Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. The ISME Journal, 5 (1), 8-19.
Gifford, S.M., Sharma, S., Booth, M., Morán, M.A., 2013. Expression patterns reveal niche diversification in a marine microbial assemblage. The ISME Journal, 7 (2), 281-298.
Gonzalez, J.M., Sherr, E.B., Sherr, B.F., 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Applied and Environmental Microbiology, 56 (3), 583-589.
Grasshoff, K., 1976. Methods of Seawater Analysis. Verlag Chemie, Weinheim, 307 pp.
Grbec, B., Morović, M., Kušpilić, G., Matijević, S., Matić, F. et al., 2009. The relationship between atmospheric variability and productivity in the Adriatic Sea area. Journal of the Marine Biological Association of the United Kingdom, 89 (8), 1549-1558.
Grbec, B., Matić, F., Paklar, G.B., Morović, M., Popović, R. et al., 2019. Long-term trends, variability, and extremes of in situ sea surface temperature measured along the eastern Adriatic coast and its relationship to hemispheric processes. Pure and Applied Geophysics, 175 (11), 4031-4046.
Gu, B., Lee, C., Ma, X., Tan, Y., Liu, H. et al. 2020. Effect of warming on growth, grazing, and community composition of free-living bacterioplankton in subtropical coastal waters during winter and summer. Frontiers in Microbiology, 11, 534404.
Gu, B., Ma, X., Chen, B., Liu, H., Zhang, Y. et al., 2024. Differential impacts of temperature increase on prokaryotes across temperature regimes in subtropical coastal waters: insights from field experiments. Limnology and Oceanography, 70 (1), 40-53.
Gualdi, S., Somot, S., Li, L., Artale, V., Adani, M. et al., 2013. The CIRCE simulations: Regional climate change projections with realistic representation of the Mediterranean Sea. Bulletin of the American Meteorological Society, 94 (1), 65-81.
Hahn, M.W., Höfle, M.G., 2001. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiology Ecology, 35 (2), 113-121.
Huete-Stauffer, T.M., Morán, X.A.G., 2012. Dynamics of heterotrophic bacteria in temperate coastal waters: similar net growth but different controls in low and high nucleic acid cells. Aquatic Microbial Ecology, 67 (3), 211-223.
IPCC, 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor et al., (Eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp.
Jurgens, K., Pernthaler, J., Schalla, S., Amann, R., 1999. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Applied and Environmental Microbiology, 65 (3), 1241-1250.
Kirchman, D., Morán, X., Ducklow, H., 2009. Microbial growth in the polar oceans-role of temperature and potential impact of climate change. Nature Reviews Microbiology, 7 (6), 451-459.
Kirchman, D.L., 2016. Growth rates of microbes in the oceans. Annual Review of Marine Science, 8, 285-309.
Koton-Czarnecka, M., Chróst, R.J., 2003. Protozoans prefer large and metabolically active bacteria. Polish Journal of Environmental Studies, 12 (3), 325-334.
Kovač, Ž., Platt, T., Ninčević Gladan, Ž., Morović, M., Sathyendranath, S. et al., 2018. A 55-year time series station for primary production in the Adriatic Sea: data correction, extraction of photosynthesis parameters, and regime shifts. Remote Sensing, 10 (9), 1460.
Landry, M.R., Hassett, R.P., 1982. Estimating the grazing impact of marine microzooplankton. Marine Biology, 67, 283-288.
Lindh, M.V., Lefébure, R., Degerman, R., Lundin, D., Andersson, A. et al., 2015. Consequences of increased terrestrial dissolved organic matter and temperature on bacterioplankton community composition during a Baltic Sea mesocosm experiment. Ambio, 44 (Suppl. 3), 402-412.
López-Urrutia, Á., San Martin, E., Harris, R.P., Irigoien, X., 2006. Scaling the metabolic balance of the oceans. Proceedings of the National Academy of Sciences, 103 (23), 8739-8744.
Manly, B.F.J., 1974. A model for certain types of selection experiments. Biometrics, 30, 281-294.
Marie, D., Partensky, F., Jacquet, S., Vaulot, D., 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology, 63 (1), 186-193.
Marrasé, C., Lim, E.L., Caron, D.A., 1992. Seasonal and daily changes in bacterivory in a coastal plankton community. Marine Ecology Progress Series, 281-289.
Mary, I., Heywood, J.L., Fuchs, B.M., Amann, R., Tarran, G.A. et al., 2006. SAR11 dominance among metabolically active low nucleic acid bacterioplankton in surface waters along an Atlantic meridional transect. Aquatic Microbial Ecology, 45 (2), 107-113.
Matić, F., Grbec, B., Morović, M., 2011. Indications of climate regime shifts in the middle Adriatic Sea. Acta Adriatica, 52 (2), 235-246.
Morán, X.A.G., Ducklow, H.W., Erickson, M., 2011. Single- cell physiological structure and growth rates of heterotrophic bacteria in a temperate estuary (Waquoit Bay, Massachusetts). Limnology and Oceanography, 56 (1), 37-48.
Morán, X.A.G., Alonso-Sáez, L., Nogueira, E., Ducklow, H.W., González, N. et al., 2015. More, smaller bacteria in response to ocean’s warming? Proceedings of the Royal Society B: Biological Sciences, 282 (1810), 20150371.
Morán, X.A.G., Calvo-Díaz, A., Arandia-Gorostidi, N., Huete- Stauffer, T.M., 2018. Temperature sensitivities of microbial plankton net growth rates are seasonally coherent and linked to nutrient availability. Environmental Microbiology 20, 3798-3810.
Morrissey, E.M., Mau, R.L., Schwartz, E., Caporaso, J.G., Dijkstra, P. et al., 2016. Phylogenetic organization of bacterial activity. The ISME journal, 10 (9), 2336-2340.
Newton, R.J., Griffin, L.E., Bowles, K.M., Meile, C., Gifford, S. et al., 2010. Genome characteristics of a generalist marine bacterial lineage. The ISME Journal, 4 (6), 784-798.
Ninčević Gladan, Ž., Marasović, I., Grbec, B., Skejić, S., Bužančić, M. et al., 2010. Inter-decadal variability in phytoplankton community in the Middle Adriatic (Kaštela Bay) in relation to the North Atlantic Oscillation. Estuaries and Coasts, 33, 376-383.
O’Connor, M.I., Piehler, M.F., Leech, D.M., Anton, A., Bruno, J.F., 2009. Warming and resource availability shift food web structure and metabolism. PLoS Biology, 7 (8), e1000178.
Pernthaler, J., 2005. Predation on prokaryotes in the water column and its ecological implications. Nature Reviews Microbiology, 3, 537-546.
Pernthaler, A., Pernthaler, J., Amann, R., 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Applied and Environmental Microbiology, 68, 3094-3101.
Pernthaler, J., Posch, T., Šimek, K., Vrba, J., Pernthaler, A. et al., 2001. Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Applied and Environmental Microbiology, 67, 2145-2155.
Pinhassi, J., Berman, T., 2003. Differential growth response of colony-forming α-and γ-proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat. Applied and Environmental Microbiology, 69 (1), 199-211.
Posch, T., Loferer-Krößbacher, M., Gao, G., Alfreider, A., Pernthaler, J. et al., 2001. Precision of bacterioplankton biomass determination: a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquatic Microbial Ecology, 25 (1), 55-63.
Rassoulzadegan, F., Sheldon, R.W., 1986. Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment. Limnology and Oceanography, 31 (5), 1010-1029.
Rose, J.M., Caron, D.A., 2007. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnology and Oceanography, 52 (2), 886-895.
Rychert, K., 2022. Detecting food limitation of bacterial growth during dilution experiments. Oceanologia, 64 (3), 405-416.
Salter, I., Galand, P.E., Fagervold, S.K., Lebaron, P., Obernosterer, I. et al., 2015. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. The ISME Journal, 9 (2), 347-360.
Sánchez, O., Koblížek, M., Gasol, J. M., Ferrera, I., 2017. Effects of grazing, phosphorus and light on the growth rates of major bacterioplankton taxa in the coastal NW Mediterranean. Environmental Microbiology Reports, 9 (3), 300-309.
Sánchez, O., Ferrera, I., Mabrito, I., Gazulla, C.R., Sebastián, M. et al., 2020. Seasonal impact of grazing, viral mortality, resource availability and light on the group-specific growth rates of coastal Mediterranean bacterioplankton. Scientific reports, 10, 19773.
Sarmento, H., Montoya, J.M., Vázquez-Domínguez, E., Vaqué, D., Gasol, J.M., 2010. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philosophical Transactions of the Royal Society B, 365 (1549), 2137-2149.
Sherr, B.F., Sherr, E.B., McDaniel, J., 1992. Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblage. Applied and Environmental Microbiology, 58, 2381-2385.
Šimek, K., Pernthaler, J., Weinbauer, M.G., Hornák, K., Dolan, J.R. et al., 2001. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Applied and Environmental Microbiology, 67 (6), 2723-2733.
Sintes, E., Herndl, G.J., 2006. Quantifying substrate uptake by individual cells of marine bacterioplankton by catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography. Applied and Environmental Microbiology, 72 (11), 7022-7028.
Smith, T.P., Thomas, T.J.H., García-Carreras, B. Sal, S., Yvon- Durocher, G. et al., 2019. Community-level respiration of prokaryotic microbes may rise with global warming. Nature Communications, 10, 5124.
Šolić, M., Krstulović, N., Šantić, D., Šestanović, S., Kušpilić, G. et al., 2017. Impact of the 3°C temperature rise on bacterial growth and carbon transfer towards higher trophic levels: Empirical models for the Adriatic Sea. Journal of Marine Systems, 173, 81-89.
Šolić, M., Šantić, D., Šestanović, S., Bojanić, N., Grbec, B. et al., 2018a. Spatio-Temporal Reproducibility of the Microbial Food Web Structure Associated with the Change in Temperature: Long-Term Observations in the Adriatic Sea. Progress in Oceanography, 161, 87-101.
Šolić, M., Šantić, D., Šestanović, S., Bojanić, N., Ordulj, M. et al., 2018b. The effect of temperature increase on microbial carbon fluxes in the Adriatic Sea: an experimental approach. FEMS Microbiology Ecology, 94 (10), p.fiy169.
Šolić, M., Šantić, D., Šestanović, S., Bojanić, N., Jozić, S. et al., 2019. Temperature and phosphorus interact in controlling the picoplankton carbon flux in the Adriatic Sea: an experimental versus field study. Environmental Microbiology, 21 (7), 2469-2484.
Šolić, M., Šantić, D., Šestanović, S., Bojanić, N., Jozić, S. et al., 2020. Changes in the trophic pathways within the microbial food web in the global warming scenario: an experimental study in the Adriatic Sea. Microorganisms, 8 (4), 510.
Šolić, M., Šantić, D., Šestanović, S., Kušpilić, G., Matić, F. et al., 2021. Changing ecological conditions in the marine environment generate different microbial food web structures in a repeatable manner. Frontiers in Marine Science, 8, 811155.
Suzuki, M.T., 1999. Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquatic Microbial Ecology, 20 (3), 261-272.
Tada, Y., Taniguchi, A., Hamasaki, K., 2010. Phylotype-specific growth rates of marine bacteria measured by bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization. Aquatic Microbial Ecology, 59 (3), 229-238.
Tamames, J., Sánchez, P.D., Nikel, P.I., Pedrós-Alió, C., 2016. Quantifying the relative importance of phylogeny and environmental preferences as drivers of gene content in prokaryotic microorganisms. Frontiers in Marine Science, 7, 433.
Teira, E., Martínez-García, S., Lønborg, C., Álvare-Salgado, X.A., 2009. Growth rates of different phylogenetic bacterioplankton groups in a coastal upwelling system. Environmental Microbiology Reports, 1 (6), 545-554.
Thingstad, T.F., Øvreås, L., Vadstein, O., 2022. Mechanisms generating dichotomies in the life strategies of heterotrophic marine prokaryotes. Diversity, 14 (3), 217.
Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Mitteilungen, 9 (1), 1-38.
Vázquez-Domínguez, E., Vaqué, D., Gasol, J.M., 2012. Temperature effects on the heterotrophic bacteria, heterotrophic nanoflagellates, and microbial top predators of the NW Mediterranean. Aquatic Microbial Ecology, 67 (2), 107-121.
Vila‐Costa, M., Gasol, J.M., Sharma, S. Morán, M.A., 2012. Community analysis of high‐and low‐nucleic acid‐containing bacteria in NW Mediterranean coastal waters using 16S rDNA pyrosequencing. Environmental Microbiology, 14 (6), 1390-1402.
Vilibić, I., Matijević, S., Šepić, J., Kušpilić, G., 2012. Changes in the Adriatic oceanographic properties induced by the Eastern Mediterranean Transient. Biogeosciences, 9 (6), 2085-2097.
Vilibić, I., Šepić, J., Proust, N., 2013. Weakening of thermohaline circulation in the Adriatic Sea. Climate Research, 55 (3), 217-225.
von Scheibner, M., Dörge, P., Biermann, A., Sommer, U., Hoppe, H.G. et al., 2014. Impact of warming on phyto‐bacterioplankton coupling and bacterial community composition in experimental mesocosms. Environmental Microbiology, 16 (3), 718-733.
Ward, C.S., Yung, C.M., Davis, K.M., Blinebry, S.K., Williams, T.C. et al., 2017. Annual community patterns are driven by seasonal switching between closely related marine bacteria. The ISME Journal, 11(6), 1412-1422.
Weinbauer, M.G., Suominen, S., Jezbera, J., Kerros, M.E., Marro, S. et al., 2019. Shifts in cell size and community composition of bacterioplankton due to grazing by heterotrophic flagellates: evidence from a marine system. Aquatic Microbial Ecology, 83 (3), 295-308.
Wernberg, T., Smale, D.A., Tuya, F., Thomsen, M.S., Langlois, T.J. et al., 2013. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 3 (1), 78-82.
Wright, R.T., Coffin, R.B., 1984. Measuring microzooplankton grazing on planktonic marine bacteria by its impact on bacterial production. Microbial Ecology, 10, 137-149.
Yeh, Y.C., Fuhrman, J.A., 2022. Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Communications, 2 (1), 36.
Yokokawa, T., Nagata, T., Cottrell, M. T., Kirchman, D.L., 2004. Growth rate of the major phylogenetic bacterial groups in the Delaware estuary. Limnology and Oceanography, 49 (5), 1620-1629.
Yokokawa, T., Nagata, T., 2005. Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments. Applied and Environmental Microbiology, 71 (11), 6799-6807.