Licence to predict – Investigating approaches to modelling low-occurrence deep-sea Irish Antipatharia with a new evaluation metric


Published: Sep 9, 2025
Keywords:
Species distribution modelling MaxEnt Gradient boosting Evaluation metrics Antipatharia
ALEXA PARIMBELLI
MARK P. JOHNSON
https://orcid.org/0000-0002-5078-1410
KERRY HOWELL
CLAIRE LAGUIONIE-MARCHAIS
A. LOUISE ALLCOCK
https://orcid.org/0000-0002-4806-0040
Abstract

Species distribution modelling has proven effective in locating cold-water coral hotspots in the deep sea. Maximum entropy (MaxEnt) and gradient boosting (GBM) are equally good at modelling rare species, but previous efforts to predict the distribution of deep-sea Antipatharia have mostly employed MaxEnt. This study investigates how algorithm choice (MaxEnt or GBM) and the application of backward stepwise variable pre-selection influence model performance and generalisation. Thirty-six models (four frameworks for nine black coral morphospecies) were built and evaluated using AUC, TSS, and the average TSS index (ATI), a novel metric that calculates TSS drops between training and test data to measure generalisation capability.ATI identified concerns in model generalisation that were not captured by AUC and TSS, making it a valuable tool for evaluating predictive model quality in conservation applications. MaxEnt outperformed GBM in predicting black coral distribution, and the pre-selection of variables did not improve performance. Satisfactory results were only obtained for the two MaxEnt models of Stichopathes gravieri, providing insights into the implications of using small datasets in conservation efforts. The inconsistencies in our findings do not lead us to recommend the use of a single model type in future studies; rather, we stress the importance of careful evaluation of model metrics with ecological knowledge of the species distribution when applying a dataset to conservation purposes.

Article Details
  • Section
  • Research Article
Downloads
Download data is not yet available.
References
Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43 (6), 1223-1232.
Anderson, O.F., Guinotte, J.M., Rowden, A.A., Tracey, D.M., Mackay, K.A. et al., 2016. Habitat suitability models for predicting the occurrence of vulnerable marine ecosystems in the seas around New Zealand. Deep Sea Research Part I: Oceanographic Research Papers, 115, 265-292.
Arantes, R.C.M., Castro, C.B., Pires, D.O., Seoane, J.C.S., 2009. Depth and water mass zonation and species associa tions of cold–water octocoral and stony coral communities in the southwestern Atlantic. Marine Ecology Progress Series, 397, 71-79.
Araújo, M.B., New, M., 2007. Ensemble forecasting of species distributions. Trends in ecology & evolution, 22 (1), 42-47.
Araújo, M.B., Anderson, R.P., Barbosa, A.M., Beale, C.M., Dormann, C.F. et al., 2019. Standards for distribution models in biodiversity assessments. Science Advances, 5 (1), eaat4858
Auscavitch, S.R., Deere, M.C., Keller, A.G., Rotjan, R.D., Shank, T.M. et al., 2020. Oceanographic drivers of deep-sea coral species distribution and community assembly on seamounts, islands, atolls, and reefs within the Phoenix Islands protected area. Frontiers in Marine Science, 7, 42.
Barbosa, A.M., Real, R., Munoz, A.R., Brown, J.A., 2013. New measures for assessing model equilibrium and prediction mismatch in species distribution models. Diversity and Distributions, 19 (10), 1333-1338
Bargain, A., Foglini, F., Pairaud, I., Bonaldo, D., Carniel, S. et al., 2018. Predictive habitat modeling in two Mediterranean canyons including hydrodynamic variables. Progress in Oceanography, 169, 151-168.
Bean, W.T., Stafford, R., Brashares, J.S., 2012. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography, 35 (3), 250-258.
Bell, K.L., Chow, J.S., Hope, A., Quinzin, M.C., Cantner, K.A. et al., 2022. Low-cost, deep-sea imaging and analysis tools for deep-sea exploration: A collaborative design study. Frontiers in Marine Science, 9, 873700.
Bollinger, M., Macartney, K.J., Easton, E.E., Hicks, D.W., 2022. Islands in the mud: The South Texas banks provide crucial mesophotic habitat for coral communities. Frontiers in Marine Science, 9, 1026407.
Boria, R.A., Olson, L.E., Goodman, S.M., Anderson, R.P., 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological modelling, 275, 73-77.
Bradshaw, C., Tjensvoll, I., Sköld, M., Allan, I.J., Molvaer, J. et al., 2012. Bottom trawling resuspends sediment and releases bioavailable contaminants in a polluted fjord. Environmental Pollution, 170, 232-241.
Breiner, F.T., Guisan, A., Bergamini, A., Nobis, M.P., 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6 (10), 1210-1218.
Buhl-Mortensen, L., Mortensen, P.B., 2004. Symbiosis in deep-water corals. Symbiosis, 37 (1), 155 -168.
Burnham, K.P., Anderson, D.R., 1998. Practical use of the information- theoretic approach. p. 75-117. In: Model Selection and Inference. Springer, New York.
Chimienti, G., De Padova, D., Mossa, M., Mastrototaro, F., 2020. A mesophotic black coral forest in the Adriatic Sea. Scientific Reports, 10 (1), 8504.
Chu, J.W., Nephin, J., Georgian, S., Knudby, A., Rooper, C. et al., 2019. Modelling the environmental niche space and distributions of cold-water corals and sponges in the Canadian northeast Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 151, 103063.
Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20 (1), 37-46.
Colin, B., Clifford, S., Wu, P., Rathmanner, S., Mengersen, K., 2017. Using boosted regression trees and remotely sensed data to drive decision-making. Open Journal of Statistics, 7 (5), 859-875.
Coetzee, B.W., Robertson, M.P., Erasmus, B.F., Van Rensburg, B.J., Thuiller, W., 2009. Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. Global Ecology and Biogeography, 18 (6), 701-710.
Danovaro, R., Aronson, J., Cimino, R., Gambi, C., Snelgrove, P.V. et al., 2021. Marine ecosystem restoration in a changing ocean. Restoration Ecology, 29, e13432.
Davies, A.J., Guinotte, J.M., 2011. Global habitat suitability for framework-forming cold-water corals. PloS one, 6 (4), e18483. De Marco, P., Nóbrega, C.C., 2018. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PloS One, 13 (9), e0202403.
Dedman, S., Officer, R., Clarke, M., Reid, D.G., Brophy, D., 2017. Gbm.auto: A software tool to simplify spatial modelling and Marine Protected Area planning. PloS One, 12 (12), e0188955.
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G. et al., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36 (1), 27-46.
Downie, A.L., Noble-James, T., Chaverra, A., Howell, K.L., 2021. Predicting sea pen (Pennatulacea) distribution on the UK continental shelf: evidence of range modification by benthic trawling. Marine Ecology Progress Series, 670, 75-91.
Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S. et al., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29 (2), 129-151.
Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. Journal of Animal Ecology, 77 (4), 802-813.
Elith, J., Graham, C.H., 2009. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32 (1), 66-77.
Elith, J., Leathwick, J.R, 2009. Species distribution models: ecological explanation and prediction across space and time. Annual review of ecology, evolution, and systematics, 40 (1), 677-697.
Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y. E. et al., 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17 (1), 43-57.
Elith, J., Franklin, J., 2013. Species distribution modeling. p. 692-705. In: Encyclopedia of Biodiversity: Second Edition. Levin S. A. (Eds.). Academic Press, Waltham, MA.
Etnoyer, P.J., Wagner, D., Fowle, H.A., Poti, M., Kinlan, B., et al., 2018. Models of habitat suitability, size, and age–class structure for the deep-sea black coral Leiopathes glaberrima in the Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography, 150, 218-228.
Food and Agriculture Organization (FAO), 2009. International Guidelines for the Management of Deep–sea Fisheries in the High Seas. FAO, Rome, Italy. 73 pp. Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24 (1), 38-49.
Fitzpatrick, M.C., Gotelli, N.J., Ellison, A.M., 2013. MaxEnt versus MaxLike: Empirical comparisons with ant species distributions. Ecosphere, 4 (5), 1-15.
Fourcade, Y., Engler, J. O., Rödder, D., Secondi, J., 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PloS One, 9 (5), e97122.
Freeman, E.A., Moisen, G., 2008a. PresenceAbsence: An R package for presence absence analysis. Journal of Statistical Software, 23 (11), 1-31.
Freeman, E.A., Moisen, G., 2008b. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217 (1-2), 48-58.
Friedman, J.H., 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis, 38 (4), 367-378.
García-Roselló, E., Guisande, C., Manjarrés-Hernández, A., González -Dacosta, J., Heine, J. et al., 2015. Can we derive macroecological patterns from primary Global Biodiversity Information Facility data? Global Ecology and Biogeography, 24 (3), 335-347.
Georgian, S.E., Anderson, O.F., Rowden A.A., 2019. Ensemble habitat suitability modeling of vulnerable marine ecosystem indicator taxa to inform deep-sea fisheries management in the South Pacific Ocean. Fisheries Research, 211, 256-274.
Guinan, J., Brown, C., Dolan, M.F.J., Grehan, A.J., 2009. Ecological niche modelling of the distribution of cold–water coral habitat using underwater remote sensing data. Ecological Informatics, 4 (2), 83-92.
Guisan, A., Thuiller, W., Zimmermann, N.E., 2017. Habitat Suitability and Distribution Models: With Applications in R. Cambridge University Press, United Kingdom, 461 pp.
Howell, K.L., Holt, R., Endrino, I.P., Stewart, H., 2011. When the species is also a habitat: Comparing the predictively modelled distributions of Lophelia pertusa and the reef habitat it forms. Biological Conservation, 144 (11), 2656-2665.
Howell, K.L., Piechaud, N., Downie, A.-L., Kenny, A., 2016. The distribution of deep–sea sponge aggregations in the North Atlantic and implications for their effective spatial management. Deep Sea Research Part I: Oceanographic Research Papers, 115, 309-320.
Howell, K., Bridges, A., Graves, K., Allcock, L., la Bianca, G. et al., 2022. Performance of deep–sea habitat suitability models assessed using independent data, and implications for use in area–based management. Marine Ecology Progress Series, 695, 33-51.
ICES, 2021. Workshop on the Use of Predictive Habitat Models in ICES Advice (WKPHM). ICES Scientific Reports, 3:67, 100 pp.
Innangi, S., Di Febbraro, M., Innangi, M., Grasselli, F., Belfiore, A.M. et al., 2024. Habitat suitability modelling to predict the distribution of deep coral ecosystems: The case of Linosa Island (southern Mediterranean Sea, Italy). Marine Environmental Research, 200, 106656.
Järnegren, J., Kutti, T. 2014. Lophelia pertusa in Norwegian waters. What have we learned since 2008? NINA Report 1028, 40 pp.
Kenchington, E., Callery, O., Davidson, F., Grehan, A., Morato, T. et al., 2019. Use of Species Distribution Modeling in the Deep Sea. Canadian Technical Report of Fisheries and Aquatic Sciences, 3296, 76 pp.
Lauria, V., Massi, D., Fiorentino, F., Milisenda, G., Cillari, T., 2021. Habitat suitability mapping of the black coral Leiopathes glaberrima to support conservation of vulnerable marine ecosystems. Scientific Reports, 11 (1), 15661.
Lavorato, A., Stranges, S., Bonilla, H.R., 2021. Potential Distribution and Environmental Niche of the Black Corals Antipathes galapagensis and Myriopathes panamensis in the Eastern Tropical Pacific. Pacific Science, 75 (1), 129-145.
Liu, C., White, M., Newell, G., 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40 (4), 778-789.
Lo Iacono, C., Robert, K., Gonzalez-Villanueva, R., Gori, A., Gili, J.M. et al., 2018. Predicting cold-water coral distribution in the Cap de Creus Canyon (NW Mediterranean): Implications for marine conservation planning. Progress in Oceanography, 169, 169-180.
Lobo, J., Jiménez-Valverde, A., Real, R., 2008. AUC: A misleading measure of the performance of predictive distribution models. Journal of Global Ecology and Biogeography, 17, 145-151.
Masson, D.G., Howe, J.A., Stoker, M.S., 2002. Bottom–current sediment waves, sediment drifts and contourites in the northern Rockall Trough. Marine Geology, 192 (1), 215-237.
Merow, C., Smith, M.J., Edwards Jr, T.C., Guisan, A., McMahon, S.M. et al., 2014. What do we gain from simplicity versus complexity in species distribution models? Ecography, 37 (12), 1267-1281.
Nagy, H., Lyons, K., Nolan, G., Cure, M., Dabrowski, T., 2020. A Regional Operational Model for the North East Atlantic: Model Configuration and Validation. Journal of Marine Science and Engineering, 8 (9), 673.
Palummo, V., Milisenda, G., Canese, S., Salvati, E., Pica, D. et al., 2023. Effect of environmental and anthropogenic factors on the distribution and co–occurrence of cold-water corals. Frontiers in Marine Science, 10, 1272066.
Peterson, A.T., Soberón, J., 2012. Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza & Conservação, 10 (2), 102-107.
Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190 (3), 231-259.
Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31 (2), 161-175.
Piechaud, N., Downie, A., Stewart, H.A., Howell, K.L., 2014. The impact of modelling method selection on predicted extent and distribution of deep-sea benthic assemblages. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 105 (4), 251-261.
Reiss, H., Cunze, S., König, K., Neumann, H., Kröncke, I., 2011. Species distribution modelling of marine benthos: A North Sea case study. Marine Ecology Progress Series, 442, 71-86.
Ridgeway, G., 2007. Generalized Boosted Models: A guide to the gbm package. http://cran.r–project.org/web/packages/gbm/vignettes/gbm.pdf (Accessed 11 December 2022).
Roberts, J.M., Cairns, S. D., 2014. Cold–water corals in a changing ocean. Current Opinion in Environmental Sustainability, 7, 118-126.
Roberts, J.M., Wheeler, A., Freiwald, A., Cairns, S., 2009. Cold–Water Corals: The Biology and Geology of Deep–Sea Coral Habitats. Cambridge University Press, United Kingdom, 333 pp.
Ross, R.E., Howell, K.L., 2013. Use of predictive habitat modelling to assess the distribution and extent of the current protection of ‘listed’ deep–sea habitats. Diversity and Distributions, 19 (4), 433-445.
Ross, S.W., Brooke, S., Quattrini, A.M., Rhode, M., Watterson, J.C., 2015a. A deep-sea community, including Lophelia pertusa, at unusually shallow depths in the western North Atlantic Ocean off northeastern Florida. Marine Biology, 162 (3), 635-648.
Ross, L.K., Ross, R.E., Stewart, H.A., Howell, K.L., 2015b. The Influence of Data Resolution on Predicted Distribution and Estimates of Extent of Current Protection of Three ‘Listed’ Deep–Sea Habitats. PLoS One, 10 (10), e0140061.
Schlining, B.M., Stout, N.J., 2006. MBARI’s Video Annotation and Reference System. p. 1-5. In: OCEANS, 18-21 September 2006. IEEE, Boston.
Segurado, P., Araújo, M.B., Kunin, W.E., 2006. Consequences of spatial autocorrelation for niche–based models. Journal of Applied Ecology, 43 (3), 433-444.
Shabani, F., Kumar, L., Ahmadi, M., 2016. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecology and Evolution, 6 (16), 5973-5986.
Shabani, F., Kumar, L., Ahmadi, M., 2018. Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the true skill statistic. Global Journal of Human– Social Science: B Geography, Geo–Sciences, Environmental Science & Disaster Management, 18 (1).
Stockwell, D.R.B., Peterson, A.T., 2002. Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148 (1), 1-13.
Taviani, M., Angeletti, L., Antolini, B., Ceregato, A., Froglia, C. et al., 2011. Geo-biology of Mediterranean deep–water coral ecosystems. Marine research at CNR, 6, 705-719.
Thiem, Ø., Ravagnan, E., Fosså, J.H., Berntsen, J., 2006. Food supply mechanisms for cold–water corals along a continental shelf edge. Journal of Marine Systems, 60 (3), 207-219.
Tong, R., Davies, A.J., Yesson, C., Yu, J., Luo, Y. et al., 2023. Environmental drivers and the distribution of cold–water corals in the global ocean. Frontiers in Marine Science, 10, 1217851.
Tudhope, A.W., Scoffin, T.P., 1995. Processes of sedimentation in Gollum Channel, Porcupine Seabight: Submersible observations and sediment analyses. Transactions of the Royal Society of Edinburgh: Earth Sciences, 86 (1), 49-55.
Valavi, R., Guillera‐Arroita, G., Lahoz‐Monfort, J.J., Elith, J., 2022. Predictive performance of presence‐only species distribution models: A benchmark study with reproducible code. Ecological Monographs, 92 (1), e01486.
Velasco, J.A., González–Salazar, C., 2019. Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecological Informatics, 51, 25-32.
Vinha, B., Murillo, F.J., Schumacher, M., Hansteen, T.H., Schwarzkopf, F.U. et al., 2024. Ensemble modelling to predict the distribution of vulnerable marine ecosystems indicator taxa on data‐limited seamounts of Cabo Verde (NW Africa). Diversity and Distributions, 30 (8), e13896.
Wagner, D., Luck, D.G., Toonen, R.J., 2012. The biology and ecology of black corals (Cnidaria: Anthozoa: Hexacorallia: Antipatharia). Advances in Marine Biology, 63, 67-132.
Walbridge, S., Slocum, N., Pobuda, M., Wright, D.J., 2018. Unified Geomorphological Analysis Workflows with Benthic Terrain Modeler. Geosciences, 8 (3), 94.
Warren, D., Seifert, S., 2011. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21 (2), 335-342.
White, H.K., Hsing, P.Y., Cho, W., Shank, T.M., Cordes, E.E. et al., 2012. Impact of the Deepwater Horizon oil spill on a deep–water coral community in the Gulf of Mexico. Proceedings of the National Academy of Sciences, 109 (50), 20303-20308.
Williams, A., Althaus, F., Dunstan, P.K., Poore, G.C.B., Bax, N.J. et al., 2010. Scales of habitat heterogeneity and megabenthos biodiversity on an extensive Australian continental margin (100–1100 m depths). Marine Ecology, 31 (1), 222-236.
Winship, A.J., Thorson, J.T., Clarke, M.E., Coleman, H.M., Costa, B. et al., 2020. Good practices for species distribution modeling of deep-sea corals and sponges for resource management: Data collection, analysis, validation, and communication. Frontiers in Marine Science, 7, 303.
Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H. et al., 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14 (5), 763-773.
Yesson, C., Bedford, F., Rogers, A.D., Taylor, M. L., 2017. The global distribution of deep–water Antipatharia habitat. Deep Sea Research Part II: Topical Studies in Oceanography, 145, 79-86.
Zurell, D., Franklin, J., König, C., Bouchet, P.J., Dormann, C.F., 2020. A standard protocol for reporting species distribution models. Ecography, 43 (9), 1261-1277.