Fatty acid content and profile of round sardinella (Sardinella aurita), an expanding thermophilic species in the NW Mediterranean


MAR VILA-BELMONTE
RICARD BOU
ELSA LLORET
JOSEP LLORET
Resumen

Over the past few decades, due to sea warming driven by global climate change, the habitat range of round sardinella (Sardinella aurita) has expanded into the north-western Mediterranean Sea. This study evaluates the fatty acid content and fatty acid profile of this small, warm-water pelagic fish caught in this area, specifically the northern Catalan coast. The findings provide important insights into the nutritional status of the species under changing environmental conditions. The study confirms that fatty acid content varies according to the individual specimen’s maturity stages (immature, pre-spawners, and spawners). Pre-spawners showed higher fat levels compared to spawners, whose lipids are allocated to their gonads to enhance the survival of their offspring. While a high content of omega-3 polyunsaturated fatty acids (n-3 PUFAs) was generally found at all stages of maturity, pre-spawners had higher levels of EPA but lower levels of DHA than immature individuals and spawners. Moreover, compared to small pelagic fish more typical of the temperate waters in the region (European anchovy, Engraulis encrasicolus, and European sardine, Sardina pilchardus), round sardinella generally have a higher level of PUFAs, especially DHA. Encouraging consumption of this warm water species could provide significant nutritional benefits while reducing fishing pressure on European sardine and European anchovy, whose populations are currently in a very poor state.

Article Details
  • Sección
  • Research Article
Descargas
Los datos de descargas todavía no están disponibles.
Citas
Abouel-Yazeed, A.M., 2013. Fatty acids profile of some marine water and freshwater fish. Journal of Arabian Aquaculture Society, 8 (2), 283-292.
Albo-Puigserver, M., Muñoz, A., Navarro, J., Coll, M., Pethybridge, H. et al., 2017. Ecological energetics of forage fish from the Mediterranean Sea: Seasonal dynamics and interspecific differences. Deep Sea Research Part II: Tropical Studies in Oceanography, 140, 74-82.
Albo-Puigserver, M., Borme, D., Coll, M., Tirelli, V., Palomera, I. et al., 2019. Trophic ecology of range-expanding round sardinella and resident sympatric species in the NW Mediterranean. Marine Ecology Progress Series, 620, 139-154.
Albo-Puigserver, M., Sánchez, S., Coll, M., Bernal, M., Sáez-Liante, R. et al., 2020. Year-round energy dynamics of sardine and anchovy in the north-western Mediterranean Sea. Marine Environmental Research, 159, 105021.
Arts, M.T., Kohler, C.C., 2009. Health and condition in fish: The influence of lipids on membrane competency and immune response. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in aquatic ecosystems, 237-256. Springer, New York.
Auel, H., Harjes, M., Da Rocha, R., Stübing, D., Hagen, W., 2002. Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biology, 25 (5), 374-383.
Baali, A., Belhsen, O.K., Ouazzani, K.C., Amenzoui, K., Yahyaoui, A., 2021. Age, Growth and Ovarian Histology of Sardinella aurita (Valenciennes, 1847) in the South of Atlantic Moroccan coast. Turkish Journal of Fisheries and Aquatic Sciences, 21 (4), 191-204.
Bachiller, E., Giménez, J., Albo‐Puigserver, M., Pennino, M.G., Marí‐Mena, N., et al. 2021. Trophic niche overlap between round sardinella (Sardinella aurita) and sympatric pelagic fish species in the Western Mediterranean. Ecology and Evolution, 11 (22), 16126-16142.
Báez, J.C., Pennino, M.G., Czerwinski, I.A., Coll, M., Bellido, J.M. et al., 2022. Long term oscillations of Mediterranean sardine and anchovy explained by the combined effect of multiple regional and global climatic indices. Regional Studies in Marine Science, 56, 102709.
Bayhan, B., Sever, T.M., Kaya M., 2015. Diet composition of the round sardinella Sardinella aurita Valenciennes, 1847 (Osteichthyes: Clupeidae) in the Turkish Aegean Sea. International Journal of Fauna and Biological Studies, 2 (4), 38-42.
Bell, M.V., Henderson, R.J., Sargent, J.R., 1986. The role of polyunsaturated fatty acids in fish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 83 (4), 711-719.
Bell, M.V., Tocher, D.R., 2009. Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: general pathways and new directions. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in aquatic ecosystems, 211-236. Springer, New York.
Bianchi, M., Hallström, E., Parker, R.W., Mifflin, K., Tyedmers, P. et al., 2022. Assessing seafood nutritional diversity together with climate impacts informs more comprehensive dietary advice. Communications Earth & Environment, 3 (1), 188. B
iton-Porsmoguer, S., Bou, R., Lloret, E., Alcaide, M., Lloret, J., 2020. Fatty acid composition and parasitism of European sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) populations in the northern Catalan Sea in the context of changing environmental conditions. Conservation Physiology, 8 (1), coaa121.
Bou, R., Codony, R., Tres, A., Baucells, M.D., Guardiola, F., 2005. Increase of geometrical and positional fatty acid isomers in dark meat from broilers fed heated oils. Poultry science, 84 (12), 1942-1954.
Brett, M.T., Müller-Navarra, D.C., Persson, J., 2009. Crustacean zooplankton fatty acid composition. In: Kainz, M., Brett, M., Arts, M. (Eds) Lipids in Aquatic Ecosystems. 115-146 Springer, New York.
Brosset, P., Fromentin, J.M., Van Beveren, E., Lloret, J., Marques, V. et al., 2017. Spatio-temporal patterns and environmental controls of small pelagic fish body condition from contrasted Mediterranean areas. Progress in oceanography, 151, 149-162.
Calbet, A., Garrido, S., Saiz, E., Alcaraz, M., Duarte, C.M., 2001. Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. Journal of Plankton research, 23 (3), 319-331.
Chen, J., Jayachandran, M., Bai, W., Xu, B., 2022. A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chemistry, 369, 130874.
Coll, M., Albo-Puigserver, M., Navarro, J., Palomera, I., Dambacher, J.M., 2019. Who is to blame? Plausible pressures on small pelagic fish population changes in the northwestern Mediterranean Sea. Marine Ecology Progress Series, 617- 618, 277-294.
Colombo, S.M., Rodgers, T.F., Diamond, M.L., Bazinet, R.P., Arts, M.T., 2020. Projected declines in global DHA availability for human consumption as a result of global warming. Ambio, 49 (4), 865-880.
Cury, P., Bakun, A., Crawford, R.J., Jarre, A., Quinones, R.A. et al., 2000. Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES Journal of Marine Science, 57 (3), 603-618.
Dalsgaard, J., John, M.S., Kattner, G., Müller-Navarra, D., Hagen, W., 2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology, 46, 225-340.
De Carvalho, C.C., Caramujo, M.J., 2018. The various roles of fatty acids. Molecules, 23(10), 2583.
Estaque, T., Richaume, J., Bianchimani, O., Schull, Q., Mérigot, B. et al., 2023. Marine heatwaves on the rise: One of the strongest ever observed mass mortality event in temperate gorgonians. Global change biology, 29 (22), 6159-6162.
FAO, 2018. The state of Mediterranean and Black Sea fisheries. Rome: Food and Agriculture Organization of the United Nation.
FAO, 2022. The State of World Fisheries and Aquaculture: Towards a Blue transformation. Rome: FAO. Farkas, T., 1979. Adaptation of fatty acid composition to temperature -a study on carp (Cyprinus carpio L.) liver slices. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 79 (4), 531-535.
Grossi, F., Lagasio, M., Napoli, A., Provenzale, A., Tepsich, P., 2024. Phytoplankton spring bloom in the NW M Grossi editerranean Sea under climate change. Science of The Total Environment, 914, 169884.
Hanson, S., Thorpe, G., Winstanley, L., Abdelhamid, A.S., Hooper, L., 2020. Omega-3, omega-6 and total dietary polyunsaturated fat on cancer incidence: systematic review and meta-analysis of randomised trials. British journal of cancer, 122 (8), 1260-1270.
Hartwich, M., Martin-Creuzburg, D., Wacker, A., 2013. Seasonal changes in the accumulation of polyunsaturated fatty acids in zooplankton. Journal of Plankton Research, 35 (1), 121-134.
Hernando, M.P., Schloss, I.R., De La Rosa, F., De Troch, M., 2022. Fatty acids in microalgae and cyanobacteria in a changing world: Contrasting temperate and cold environments. Biocell, 46 (3), 607-621.
ixson, S.M., Arts, M.T., 2016. Climate warming is predicted to reduce omega‐3, long‐chain, polyunsaturated fatty acid production in phytoplankton. Global Change Biology, 22 (8), 2744-2755.
Holden, M.J., Raitt, D.F.S., 1974. Manuel de science halieutique. Pt. 2: Méthodes de recherches sur les ressources et leur application. FAO, Document Technique sur les Pêches (FAO) fre no. 115 (Rev. 1).
Holm, H.C., Fredricks, H.F., Bent, S.M., Lowenstein, D.P., Ossolinski, J.E. et al., 2022. Global ocean lipidomes show a universal relationship between temperature and lipid unsaturation. Science, 376 (6600), 1487-1491.
Jin, P., Gonzàlez, G., Agustí, S., 2020. Long‐term exposure to increasing temperature can offset predicted losses in marine food quality (fatty acids) caused by ocean warming. Evolutionary Applications, 13 (9), 2497-2506.
Jónasdóttir, S.H., 2019. Fatty acid profiles and production in marine phytoplankton. Marine drugs, 17 (3), 151.
Kang, J.X., 2011. Omega-3: a link between global climate change and human health. Biotechnology advances, 29 (4), 388-390.
Kattner, G., Hagen, W., 2009. Lipids in marine copepods: latitudinal characteristics and perspective to global warming. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in Aquatic Ecosystems. (pp. 257-280). Springer, New York.
Kidd, P.M., 2007. Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Alternative medicine review, 12 (3), 207.
Lau, D.C., Jonsson, A., Isles, P.D., Creed, I.F., Bergström, A.K., 2021. Lowered nutritional quality of plankton caused by global environmental changes. Global Change Biology, 27 (23), 6294-6306.
Linder, M., Belhaj, N., Sautot, P., Tehrany, E.A., 2010. From Krill to Whale: an overview of marine fatty acids and lipid compositions. Oléagineux, Corps gras, Lipides, 17 (4), 194-204.
Litzow, M.A., Bailey, K.M., Prahl, F.G., Heintz, R., 2006. Climate regime shifts and reorganization of fish communities: the essential fatty acid limitation hypothesis. Marine Ecology Progress Series, 315, 1-11.
Lloret, J., 2010. Human health benefits supplied by Mediterranean marine biodiversity. Marine pollution bulletin, 60 (10), 1640-1646.
Lloret, J., Shulman, G., Love, R.M., 2014. Condition and health indicators of exploited marine fishes. John Wiley & Sons. 247.
Lloret, J., Sabatés, A., Muñoz, M., Demestre, M., Solé, I. et al., 2015. How a multidisciplinary approach involving ethnoecology, biology and fisheries can help explain the spatio- temporal changes in marine fish abundance resulting from climate change. Global Ecology and Biogeography, 24 (4), 448-461.
Lund, E.K., 2013. Health benefits of seafood; is it just the fatty acids? Food chemistry, 140 (3), 413-420.
Madkour, F.F., 2012. Feeding ecology of the round sardinella, Sardinella aurita (Family: Clupeidae) in the Egyptian Mediterranean waters. International Journal of Environmental Science and Engineering, 2, 83-92.
Mathieu-Resuge, M., Le Grand, F., Brosset, P., Lebigre, C., Soudant, P. et al., 2023. Red muscle of small pelagic fishes’ fillets are high-quality sources of essential fatty acids. Journal of Food Composition and Analysis, 120, 105304.
Maynou, F., Sabatés, A., Raya, V., 2020. Changes in the spawning habitat of two small pelagic fish in the Northwestern Mediterranean. Fisheries Oceanography, 29 (2), 201-213.
McBride, R. S., Somarakis, S., Fitzhugh, G. R., Albert, A., Yaragina, N. A., et al., 2015. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish and Fisheries, 16 (1), 23-57.
Mohanty, B.P., Ganguly, S., Mahanty, A., Mitra, T., Patra, S. et al., 2019. Fish in human health and nutrition. Advances in fish research, 7, 189-218.
Navarro, J., Sáez-Liante, R., Albo-Puigserver, M., Coll, M., Palomera, I., 2017. Feeding strategies and ecological roles of three predatory pelagic fish in the western Mediterranean Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 140, 9-17.
Palomera, I., Sabatés, A., 1990. Co-occurrence of Engraulis encrasicolus and Sardinella aurita eggs and larvae in the northwestern Mediterranean. Scientia Marina, 57 (1), 61-67.
Palomera, I., Olivar, M.P., Salat, J., Sabatés, A., Coll, M. et al., 2007. Small pelagic fish in the NW Mediterranean Sea: an ecological review. Progress in Oceanography, 74 (2- 3), 377-396.
Parrish, C.C., 2009. Essential fatty acids in aquatic food webs. Lipids in aquatic ecosystems, 309-326. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in Aquatic Ecosystems. Springer, New York, NY.
Pauwels, E.K., 2011. The protective effect of the Mediterranean diet: focus on cancer and cardiovascular risk. Medical principles and practice, 20 (2), 103-111.
Pennino, M.G., Coll, M., Albo-Puigserver, M., Fernández- Corredor, E., Steenbeek, J. et al., 2020. Current and future influence of environmental factors on small pelagic fish distributions in the Northwestern Mediterranean Sea. Frontiers in Marine Science, 7, 566340.
Persson, J., Vrede, T., 2006. Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshwater Biology, 51 (5), 887-900.
Pethybridge, H., Bodin, N., Arsenault-Pernet, E.J., Bourdeix, J.H., Brisset, B. et al., 2014. Temporal and inter-specific variations in forage fish feeding conditions in the NW Mediterranean: lipid content and fatty acid compositional changes. Marine Ecology Progress Series, 512, 39-54.
Puccinelli, E., Sardenne, F., Pecquerie, L., Fawcett, S.E., Machu, E. et al., 2021. Omega-3 pathways in upwelling systems: the link to nitrogen supply. Frontiers in Marine Science, 8, 664601.
Queiros, Q., Fromentin, J.M., Gasset, E., Dutto, G., Huiban, C. et al., 2019. Food in the sea: size also matters for pelagic fish. Frontiers in Marine Science, 6, 385.
Rebah, F.B., Abdelmouleh, A., Kammoun, W., Yezza, A., 2010. Seasonal variation of lipid content and fatty acid composition of Sardinella aurita from the Tunisian coast. Journal of the Marine Biological Association of the United Kingdom, 90 (3), 569-573.
Ruxton, C.H.S., Reed, S.C., Simpson, M.J.A., Millington, K.J., 2004. The health benefits of omega‐3 polyunsaturated fatty acids: a review of the evidence. Journal of human nutrition and dietetics, 17 (5), 449-459.
Sabatés, A.N.A., Martín, P., Lloret, J., Raya, V., 2006. Sea warming and fish distribution: the case of the small pelagic fish, Sardinella aurita, in the western Mediterranean. Global change biology, 12 (11), 2209-2219.
Sabatés, A., Salat, J., Raya, V., Emelianov, M., Segura-Noguera, M., 2009. Spawning environmental conditions of Sardinella aurita at the northern limit of its distribution range, the western Mediterranean. Marine Ecology Progress Series, 385, 227-236.
Sidhu, K.S., 2003. Health benefits and potential risks related to consumption of fish or fish oil. Regulatory toxicology and pharmacology, 38 (3), 336-344.
Šimat, V., Hamed, I., Petričević, S., Bogdanović, T., 2020. Seasonal changes in free amino acid and fatty acid compositions of sardines, Sardina pilchardus (Walbaum, 1792): Implications for nutrition. Foods, 9 (7), 867.
Taşbozan, O., Gökçe, M.A., 2017. Fatty acids in fish. In: Fatty acids, InTech 1, 143-159.
Tsikliras, A.C., Torre, M., Stergiou, K.I., 2005. Feeding habits and trophic level of round sardinella (Sardinella aurita) in the northeastern Mediterranean (Aegean Sea, Greece). Journal of Biological Research, 3, 67-75.
Tsikliras, A.C., Antonopoulou, E., 2006. Reproductive biology of round sardinella (Sardinella aurita) in north-eastern Mediterranean. Scientia Marina, 70 (2), 281-290.
Tsikliras, A.C., 2008. Climate-related geographic shift and sudden population increase of a small pelagic fish (Sardinella aurita) in the eastern Mediterranean Sea. Marine Biology Research, 4 (6), 477-481.
Van Beveren, E., Bonhommeau, S., Fromentin, J.M., Bigot, J.L., Bourdeix, J.H. et al., 2014. Rapid changes in growth, condition, size and age of small pelagic fish in the Mediterranean. Marine biology, 161, 1809-1822.
Watanabe, T., 1993. Importance of docosahexaenoic acid in marine larval fish. Journal of the World Aquaculture Society, 24 (2), 152-161.
Whitehead, P.J.P., 1985. Clupeoid fishes of the world (suborder Clupeoidei): Chirocentridae, Clupeidae, and Pristigasteridae. Food and Agriculture Organization of the United Nations.
Zlatanos, S., Laskaridis, K., 2007. Seasonal variation in the fatty acid composition of three Mediterranean fish-sardine (Sardina pilchardus), anchovy (Engraulis encrasicholus) and picarel (Spicara smaris). Food chemistry, 103 (3), 725-728.
Artículos más leídos del mismo autor/a