Investigation of the relationship of apelin hormone response with some physiological parameters in Maedi-Visna infected sheep


Keywords:
Maedi-Visna ewe Apelin hormone breed gender pregnancy ELİSA
B. BAYRAKTAR
A. SAIT
Ç TAKMA
E. TEKCE
Abstract

In this study, the objective was to assess the serological characteristics of sheep, during lactation and pregnancy periods, and rams belonging to the Red Karaman and White Karaman–Kangal race infected with maedi-visna infection and body condition score (BCS) of ≤2, 3- 3.5 and ≥4 (high) and to analyse the relationship between the level of apelin and its secretion. Apelin level in the blood serum samples obtained from the jugular veinof the sheeps was determined using ELISA method. As a result of the analyses, it was determined that the level of apelin was statistically different between the races; between lactating sheep and pregnant sheep; and sheep and rams. There was no difference between the BCS groups (p > 0.05). Race and sex interaction as well as race, sex and BCS triple interaction effects were found significant (p < 0.05). It was observed that the sheep belonging to the White Karaman–Kangal race were 18 times more likely to be infected with the virus. A decrease in apelin level was observed in the sheep with infection, and it was found that the risk of infection was 0.37 times higher in rams than in lactating sheep (p < 0.05).

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
References
Gayo, E., Polledo, L., Magalde, A., Balseiro, A., Iglesias, M.G., Martínez, C.P., Marín, J.G., 2019. Characterization of minimal lesions related to the presence of visna/maedi virus in the mammary gland and milk of dairy sheep. BMC Vet. Res. 15(1), 109.DOİ: 10.1186/s12917-019-1855-3.
Thormar, H., 2005.Maedi-visna virus and its relationship to human immunodeficiency virus. AIDS Rev. 7(4), 233-45.PMID: 16425963.
Gomez-Lucia, E., Barquero, N., Domenech, A.,2018.Maedi-Visna virus: current perspectives. Veterinary Medicine: Research and Reports. 9,11.DOİ: 10.2147/VMRR.S136705.
Peterhans, E., Greenland, T., Badiola, J., Harkiss, G., Bertoni, G., Amorena,B., Lenihan P., 2004. Routes of transmission and consequences of small ruminant lentiviruses (SRLVs) infection and eradication schemes. Vet.Res. 35(3),257-274.DOİ: 10.1051 / vetres :2004014.
Blacklaws, B.A., Berriatua, E., Torsteinsdottir, S., Watt,N.J, De Andres, D., Klein, D., Harkiss, G.D., 2004.Transmission of small ruminant lentiviruses. Vet. microbiol.101(3), 199-208. DOİ: 10.1016/j.vetmic.2004.04.006.
Slingenbergh, J., 2019. Animal Virus Ecology and Evolution Are Shaped by the Virus Host-Body Infiltration and Colonization Pattern. Pathogens. 8(2), 72.DOİ: 10.3390 / pathogens 8020072.
Gendelman, H.E., Narayan, O., Kennedy-Stoskopf, S., Kennedy, P.G., Ghotbi, Z., Clements, J.E., Pezeshkpour, G., 1986. Tropism of sheep lentiviruses for monocytes: susceptibility to infection and virus gene expression increase during maturation of monocytes to macrophages. J Virol. 58(1), 67-74.PMID: 3005660
Stonos, N., Wootton, S.K., Karrow, N., 2014. Immunogenetics of small ruminant lentiviral infections. Viruses. 6(8), 3311-3333. DOİ:10.3390/v6083311.
Zhang, Z., Harkiss, G.D., Hopkins, J., Woodall, C.J., 2002 Granulocyte macrophage colony stimulating factor is elevated in alveolar macrophages from sheep naturally infected with maedi‐visna virus and stimulates maedi‐visna virus replication in macrophages in vitro. Clin. Exp. Allergy. 129(2), 240-246. DOİ: 10.1046/j.1365-2249.2002.01826.x.
Gomez-Lucia, E., Sanjosé, L., Crespo, O., Reina, R., Glaria, I., Ballesteros, N., Doménech, A., 2014. Modulation of the long terminal repeat promoter activity of small ruminant lentiviruses by steroids. Vet.J.202(2), 323-328. DOİ: 10.1016/j.tvjl.2014.08.003.
Bailey, M., Engler, H., Hunzeker, J., Sheridan, J.F., 2003. The hypothalamic-pituitary-adrenal axis and viral infection. Viral immunology. 16(2), 141-157. DOİ: 10.1089/088282403322017884.
Newson, M. J., Roberts, E.M., Pope, G.R., Lolait, S.J., O’Carroll, A.M., 2009. The effects of apelin on hypothalamic–pituitary–adrenal axis neuroendocrine function are mediated through corticotrophin-releasing factor-and vasopressin-dependent mechanisms. Int. J. Endocrinol. 202(1), 123. DOİ: 10.1677/JOE-09-0093.
O’Carroll, A.M., Lolait, S.J., Harris, L.E., Pope, G.R., 2013.The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. Int. J. Endocrinol. 219(1), R13-R35. DOİ: 10.1530/JOE-13-0227.
Tatemoto, K., Takayama, K., Zou, M.X., Kumaki, I., Zhang, W., Kumano, K., Fujimiya, M., 2001.The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul. Pept.99, 87-92.DOİ: 10.1016/S0167-0115(01)00236-1.
Bełtowski, J., 2006. Apelin and visfatin: unique. Med. Sci. Monit. Basic Res.12(6), RA112-RA119. PMID: 16733497.
Kleinz, M.J., Davenport,A.P., 2005.Emerging roles of apelin in biology and medicine. PharmacolTherapeut.107(2),198-211.DOİ:10.1016/j.pharmthera.2005.04.001.
Fan X., Zhou, N., Zhang, X., Mukhtar, M., Lu, Z., Fang, J., Pomerantz, R.J., 2003. Structural and functional study of the apelin-13 peptide, an endogenous ligand of the HIV-1 coreceptor, APJ. Biochem.42(34), 10163-10168. DOİ: 10.1021/bi030049s.
Kakizawa, S., 2016. Apelin. In: Handbook of Hormones. Academic Press. p. 277-e31-3.
Anker, S.D., Coats, A.J., 1999. Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest. 115(3), 836-847. DOİ: 10.1378/chest.115.3.836.
Phelps, S.L., Smith, M.C., 1993. Caprine arthritis-encephalitis virus infection. J Am Vet Med Assoc.203(12), 1663-1666. PMID: 8307813.
Russo, P., Vitu, C., Vigne, R., Filippi, P., Giauffret, A., 1988. Recherches experimentales sur le maedi-visna. Comp Immunol Microbiol Infect Dis.11(1), 35-41. DOİ: 10.1016/0147-9571(88)90006-9.
Ouzrout, R., Lerondelle, C., 1990. Expression of visna-maedi virus in the mammary secretions of a seropositive ewe during gestation and then an artificial induction of lactation. Ann. Rech. Vet. 21(1), 69-73. PMID:2160786.
Sarı, M., Önk, K., Aksoy, A.R., Tilki, M., 2013.Effect of Birth Fitness Score on lambs ‘ growth characteristics and survival strength in TUJ sheep. F. Ü. Sağ. Bil. Vet. Derg.27 (3): 149 – 154.
AOAC, 2005.Official Methods of Analysis of AOAC International. 18th ed. Rockville, MD, USA: Association of Official Analytical Chemists.
Marai, I.F.M., El-Darawany, A.A., Fadiel, A., Abdel-Hafez, M.A.M. 2007. Physiological traits as affected by heat stress in sheep-a review. Small Rumınant Res.71(1-3), 1-12. DOİ: 10.1016/j.smallrumres. 2006.10.003.
Reina, R., Grego, E., Profiti, M., Glaria, I., Robino, P., Quasso, A., Rosati, S., 2009. Development of specific diagnostic test for small ruminant lentivirus genotype E. Vet. Microbiol.138(3-4),251-257.DOİ:10.1016/j.vetmic.2009.04.005.
Kurowska, P., Barbe, A., Różycka, M., Chmielińska, J., Dupont, J., Rak, A., 2018. Apelin in reproductive physiology and pathology of different species: a critical review. Int. J. Endocrinol.DOİ:10.1155/2018/9170480.
Extramiana, A.B., González, L., Cortabarrıa, N., Garcıa, M., Juste, R.A., 2002. Evaluation of a PCR technique for the detection of Maedi-Visna proviral DNA in blood, milk and tissue samples of naturally infected sheep.Small Rumınant Res.44(2), 109-118. DOİ: 10.1016/S0921-4488(02)00044-5.
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman,D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.25(17), 3389-3402. DOİ: 10. 1093 / nar / 25. 17. 3389.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei M., Kumar, S., 2011.MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Bıol Evol.28(10), 2731-2739. DOİ: 10.1093/molbev/msr121.
Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series. 1999, Vol. 41, No. 41, pp. 95-98). [London]: Information Retrieval Ltd., c1979-c2000. DOİ: 10.1021/bk-1999-0734.ch008.
Tan, M.T., Alkan,F., 2002.Seroepidemiology and virus isolation of maedi-visna infection in Turkey. Ankara UnivVet Fak Derg.49(1), 45-50. DOİ: 10.1501/Vetfak_0000001646.
Lopez, A., Martinson,S.A.,2017.Respiratory system, mediastinum and pleurae. Pathologic basis of veterinary disease. 471-560. PMID: 14070031.
Karaoğlu, T., Alkan, F., Burgu, İ., 2003.Seroprevalence of maedi-visna infection in sheep in small family businesses.Ankara Üniv. Vet. Fak. Derg. 50, 123-126. DOİ: 10.1501/Vetfak_0000002240.
Tefera, N., Mulate, B., 2016.Seroprevalence of Maedi-Visna in sheep in selected districts of Amhara region, Ethiopia. Anim Health Prod. 64, 423-430.
Özkan, V.C., Acar, A., Gür, S., 2014.Investigation of the role of Caprine Arthritis-Encephalitis Virus (CAEV) infection in herds of goats with chronic respiratory system problems. Kocatepe Vet J. 7(2): 9-16.
Wachendörfer, von G., Kabisch, D., Klöppel, R., Frost,J.W.,1995.Seroepidemiologische Untersuchungen zum Vorkommen von Maedi-Visna-Infektionen bei Schafen mit Hinweisen zur Bekämpfung der Maedi. Tierärztl Umschau.50:16-25. DOİ: 10.1007/BF01639101.
Simard, C.L., Briscoe, M.R., 1990. An enzyme-linked immunosorbent assay for detection of antibodies to maedi-visna virus in sheep. II. Comparison to conventional agar gel immunodiffusion test. Can J Vet Res.54(4), 451. PMID:2174296.
Houwers, D.J., Schaake, J.J., De Boer, GF., 1984. Maedi-visna control in sheep II. Half-yearly serological testing with culling of positive ewes and progeny. Vet. Microbiol. 9(5), 445-451. DOİ: 10.1016/0378-1135(84)90065-8.
Cutlip, R. C., Lehmkuhl, H.D., Sacks, J.M., Weaver, A.L.,1992. Seroprevalence of ovine progressive pneumonia virus in sheep in the United States as assessed by analyses of voluntarily submitted samples. Am J Vet Res. 53(6), 976-979. PMID: 1320816.
Yavru, S., Şimşek, A., Bulut, O., Kale, M., 2012. Serological Research on Maedi-Visna virus infection in Konya region sheep.Eurasian J Vet Sci. 28(3), 142- 148.
Burgu, İ., Toker, A., Akça, Y., Alkan, F.,Yazıcı,Z., Özkul, A., 1990.Serological Investigation Of Visna-Maedi Infection In Turkey. AÜ Vet Fak Derg.37: 538–553.
Kandil, M., Metin, N., Özdarendereli, A., 1997.FÜ Yüksel, H. Serological Research on Visna-Maedi virus infection in sheep in Elazığ.Sağlık Bil Dergisi. 11, 283-287.
Van Mieghem, T., Van Bree, R., Van Herck, E., Pijnenborg, R., Deprest, J., Verhaeghe, J.,2010. Maternal apelin physiology during rat pregnancy: the role of the placenta. Placenta. 31(8), 725-730. DOİ: 10.1016/j.placenta.2010.06.001.
Habata, Y., Fujii, R., Hosoya, M., Fukusumi, S., Kawamata, Y., Hinuma, S., Onda, H.,1999. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochimica et Biophysica Acta (BBA)-Mol Cell Res.1452(1), 25-35. DOI: 10.1016/S0167-4889(99)00114-7.
Luján, L., Pérez, M., de Andrés, D., Reina, R., 2019. Pulmonary lentivirus infection in sheep. Small Rumınant Res. 181,87-90. DOI: 10.1016/j.small rumres. 2019.05.006.
Pchejetski, D., Foussal, C., Alfarano, C., Lairez, O., Calise, D., Guilbeau-Frugier, C., Parini, A., 2011. Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur. Heart J. 33(18), 2360-2369.DOI: 10.1093/eurheartj/ehr389.
Wang, L.Y., Diao, ZL., Zhang, D.L., Zheng, J.F., Zhang, Q.D., Ding, J.X., Liu, W.H.,2014.The regulatory peptide apelin: a novel inhibitor of renal interstitial fibrosis. Amino acids. 46.12:2693-2704.DOI: 10.1007/s00726-014-1826-8.
Kim, J., 2014.Apelin-APJ signaling: a potential therapeutic target for pulmonary arterial hypertension. Mol. Cells.37(3), 196. DOI: 10.14348 / molcells. 2014. 2308.
Zhou, Q., Cao, J., Chen, L., 2016. Apelin/APJ system: A novel therapeutic target for oxidative stress-related inflammatory diseases. Int. J. Mol. Med.37(5), 1159-1169. DOI: 10.3892/ijmm.2016.2544.
Wysocka, M.B., Pietraszek-Gremplewicz, K., Nowak, D., 2018. The role of apelin in cardiovascular diseases, obesity and cancer. Front Physiol. 9. DOI: 10.3389/fphys.2018.00557.
Rayalam, S., A Della-Fera, M., Kasser, T., Warren, W., Baile, C., 2011. Emerging role of apelin as a therapeutic target in cancer: a patent review. Recent Pat Antı-Canc. 6(3), 367-372.DOI: 10.2174/157489 211796957856.
Uribesalgo, I., Hoffmann, D., Zhang, Y., Kavirayani, A., Lazovic, J., Berta, J., Schramek,D., 2019.Apelin inhibition prevents resistance and metastasis associated with anti‐angiogenic therapy. EMBO Mol. Med. DOI: 10.15252/emmm. 201809266.
Zou, M.X., Liu, H.Y., Haraguchi, Y., Soda, Y., Tatemoto, K., Hoshino, H., 2000. Apelin peptides block the entry of human immunodeficiency virus (HIV). FEBS Lett.473(1), 15-18. DOI: 10.1016/S0014-5793(00)01487-3.
Polledo, L., González, J., Fernandez, C., Miguélez, J., Martinez-Fernandez, B., Morales, S., Marín, J. G.,2013.Simple control strategy to reduce the level of Maedi-Visna infection in sheep flocks with high prevalence values (> 90%). Small Rumınant Res.112(1-3), 224-229. DOI: 10.1016/j.smallrumres.2012.12.010.
Arık, C., Acar, A., Gür, S., 2015.Clinical and serological investigation of Maedi-Visna Virus infection in and around Afyonkarahisar province. Kocatepe Vet J. 8(1): 39-44.
Çelik, Ö.Y., Akgül, G., İrak, K., 2018. Investigation of Seroprevalence of Maedi-Visna and Caprine Arthritis Encephalitis in Sheep and Goats in Siirt Province. Atatürk University J. Vet.Sci.13(3), 274-277.
Esposito,V., De, M.F., De, L.L., Acanfora, F., Onori, N., Loiacono, L., Chirianni, A., 2002. Immunohistochemical study of apelin, the natural ligand of receptor APJ, in a case of AIDS-related cachexia. In Vivo. 16(5), 337-340. PMID:12494874.
Puffer, B.A., Sharron, M., Coughlan, C.M., Baribaud, F., McManus, C.M., Lee, B., Doms, R.W., 2000. Expression and coreceptor function of APJ for primate immunodeficiency viruses. Virology. 276(2), 435- 444. DOI: 10.1006/viro.2000.0557.
De La Torre, J.C., Oldstone, M.B.1992. Selective disruption of growth hormone transcription machinery by viral infection. Proc Natl Acad Sci USA. 89(20), 9939-9943. DOI: 10.1073/pnas.89.20.9939.
SAS, 2019. Statistical Analysis Software 9.4 (SAS Institute Inc, Cary, North Carolina, USA).
Legastelois, I., Levrey, H., Greenland, T., Mornex, J.F., Cordier, G., 1998. Visna-maedi virus induces interleukin-8 in sheep alveolar macrophages through a tyrosine-kinase signaling pathway. Am J Respir Cell Mol Biol. 18(4),532-537.DOI: 10.1165/ajrcmb.18.4.2812.
Minguijón, E., Reina, R., Pérez, M., Polledo, L., Villoria, M., Ramírez, H., Luján,L.,2015. Small ruminant lentivirus infections and diseases. Vet. Microbiol. 181(1-2), 75-89. DOI: 10.1016/j.vetmic.2015.08.007.
Muz, D., Oğuzoğlu, T., Rosati, S., Reina, R., Bertolotti, L., Burgu, I.,2013. First molecular characterization of visna/maedi viruses from naturally infected sheep in Turkey. Archives of virology. 158(3), 559-570. DOI: 10.1007/s00705-012-1518-1.
Oguma, K., Tanaka, C., Harasawa, R., Kimura, A., Sasaki, J., Goryo, M., Sentsui, H., 2013. Isolation of maedi/visna virus from a sheep in Japan. J Vet Med Sci. 13-0269. DOI: 10.1292/jvms.13-0269.
Russel, A.J. F., Doney, J.M., Gunn, R.G., 1969. Subjective assessment of body fat in live sheep. J.Agric.Sci.72(3), 451-454. DOI: 10.1017/S0021859600024874.
Singh, I., McConnell, I., Blacklaws, B., 2006. Immune response to individual maedi-visna virus gag antigens. J. Virol. 80(2), 912-919. DOI:10.1128/JVI. 80.2.912-919.2006.
Tsiodras, S., Perelas, A., Wanke C., Mantzoros C.S.,2010. The HIV-1/HAART associated metabolic syndrome–novel adipokines, molecular associations and therapeutic implications. J Infect. 61(2), 101-113.DOI: 10.1016 / j. jinf. 2010. 06. 002.
Apelin, 2019.Enzyme Lınked Immunosorbent Assay (ELISA) kits (Apelin, Sunred, Product312 code: 201-16-3073, China).
KODAK, 2019. KODAK Gel Logic 100 Imaging System (Eastman Kodak Company, Rochester, NY, USA).
Preziuso, S., Or, M. E., Giammarioli, M., Kayar, A., Feliziani, F., Gönül, R., Cuteri, V. 2010. Maedi-visna virus in Turkish sheep: a preliminary serological survey using ELISA tests. Turk. J. Vet. Anim. Sci. 34(3), 289-293.DOİ: :10.3906/vet-0905-35.
Most read articles by the same author(s)