Investigation of Boron Addition to Dried Alfalfa In Vitro Ruminal Profile and Potential for Reducing Enteric Methane Emission


Published: Jan 18, 2024
Updated: 2024-01-18
Versions:
2024-01-18 (2)
Keywords:
boron in vitro rumen methane protozoa short chain fatty acids
Ö Durna Aydin
https://orcid.org/0000-0003-4532-6795
G Yildiz
U Toygar
Abstract

The aim of our study is to investigate the effects of increasing doses of boron on methane gas production amounts, short chain fatty acids level, protozoa number and organic matter digestibility in vitro with HFT (Hohenheim Futterwert Test) technique. In vitro incubation was performed in the Hohenheim Gas test method at 39°C for 24 hours in the study. Dried alfalfa was used as substrate for fermentation. Increasing doses of boron were used on fresh rumen fluid, buffer solution and dried alfalfa. In the study, 54 syringes were used for a total of 6 groups, including 1 control and 5 trial ( B1: 25 ppm boric acid, B2: 50 ppm boric acid, B3: 100 ppm boric acid, B4: 200 ppm boric acid, B4: 500 ppm boric acid). The measurement of methane gas at 2, 4, 6, 8, 12 and 24th hours of boric acid addition at increasing doses was found to be significant the difference between the groups at each hour under in vitro rumen conditions. When we look at the effect of the dose; Increasing doses appear to reduce methane production for each measured hour. The difference between the measured hours (except the 24th hour) of each group was not significant. However, the difference between the groups was found to be significant in the methane measurement made only for the 24th hour. At the 24th hour of fermentation under in vitro rumen condition, acetic acid and total short chain fatty acid values were linearly and cubically affected. With increasing doses of boron, propionic acid, isobutyric acid, butyric acid and valeric acid values were linearly affected The total number of protozoa was not affected by the addition of increasing doses of boron at the 24th hour of fermentation under in vitro rumen conditions. Consequently, the addition of boric acid at increasing doses in in vitro rumen conditions decreased methane production and positively affected the amount of some short-chain fatty acids, organic matter digestibility and total short chain fatty acids. In the light of these findings, it was emphasized that boron has the potential to reduce methane emissions from ruminant animals, considering the greenhouse gas effect.

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
References
Amanzougarene Z, Fondevila M(2022). Rumen fermentation of feed mixtures supplemented with clay minerals in a semicontinuous ın vitro
system. Animals, 12:345
AOAC (1990). Official method of analysis. 15th ed., pp.66-88. Association of Official Analytical Chemists, Washington, DC, USA.
Blümmel M, Ørskov ER(1993). Comparison of in vitro gas production
and nylon bag degradability of roughages in predicting feed intake in
cattle Anim. Feed Sci. Technol., 40: 109-119.
Breznack JA, Kane MD(1990). Microbial H2/CO2 acetogenesis in animal
guts: Nature and nutritional significance. FEMS Microbiol. Rev. 87:
-314.
Brown VE, Rymer C, Agnew RE, Givens DI (2002). Relationship between in vitro gas production profiles of forages and in vivo rumen
fermentation patterns in beef steers fed those forages,Anim. Feed Sci.
Technol. 98(1-2):13-24. DOI: 10.1016/S0377-8401(01)00341-8.
Cardozo, P.W., Calsamıglıa, S., Ferret, A., Kamel, C.(2004). Effects Of
Natural Plant Extracts On Ruminal Protein Degradation And Fermentation Profiles İn Continuous Culture. J. Anim. Sci., 82, 3230-3236.
Castro-Montoyaa J, De Campeneereb S, Van Ransta G, Fieveza V(2012).
Interactions between methane mitigation additives and basal substrates on in vitro methane and VFA production. Anim. Feed Sci.
Technol. 176: 47- 60.
Da Costa Gomez C(1999). In vitro- Untersuchungen zur reduktiven Acetogenese im Pansen. Dissertation, Institut für Tierphysiologie und
Tierernährung der Georg-AugustUniversität zu Göttingen, Göttingen.
Demirci S, Doğan A, Karakuş E, Halıcı Z, Topçu A, Demirci E, Sahin F
(2015a). Boron and poloxamer (F68 and F127) containing hydrogel
formulation for burn wound healing. Biol Trace Elem Res, 168 (1):
-180. DOI: 10.1007/s12011-015-0338-z
Demirci S, Kaya MS, Doğan A, Kalay S, Altın NÖ, Yarat Ayşen, Akyüz
SH, Sahin F (2015b). Antibacterial and cytotoxic properties of boron-containing dental composite. Turk J Biol, 39 (3): 417-426. DOI:
3906/biy-1408-18
Ece Z, Avcı M(2018). Yonca kuru otu ve süt sığırı rasyonuna zeolit ve
meşe palamudu ilavesinin in vitro organik madde sindirimi ve metan
oluşumu üzerine etkisi. Harran Üniv Vet Fak Derg. 7 (1):67-73. DOI:
31196/huvfd.470790
Geissler C, Hoffmann M, Hickel B(1976).Gas-chromatographic estimation of volatile fatty acids. Arch Anim Nutr, 26:123-129.
Greening RC, Leedle JA.Z(1989). Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from
the bovine rumen. Arch. Microbiol. 151: 399-406.
Gürsel G, Öztürk H (2021). Ruminantlarda metan salinimini azaltma
stratejileri. Vet Farm Toks Dern Bult, 12(1): 43-54.
Zeng HF, Lin LJ, Xi YM, HanZY(2017). Effects of raw and heated palygorskite on rumen fermentation in vitro, Appl. Clay Sci., 138:125-
, DOI:10.1016/j.clay.2017.01.006
Haque N, Saraswat M.L, Sahoo A(2001). Methane production and energy
balance in crossbred male calves fed on rations containing different
ratios of green sorghum and wheat straw. Indian J Anim Sci. 71: 797-
DOI: 10.3390/ani12030345
Kabu M, Civelek T (2012). Effects of propylene glycol, methionine and
sodium borate on metabolicprofile in dairy cattle during periparturient period. Rev. Méd. Vét., 163: 419-430.
Kabu M, Uyarlar C (2015). The effects of borax on milk yield and selected metabolic parameters in Austrian Simmental (Fleckvieh) cowsVet.
Med., 60:175-180.
Kutlu H, Özen N (2009). Beslenme-Küresel ısınma. p:38-39 Hayvan
Besleme Bilim Derneği Bilimsel Yayınlar No:1, Pozitif Matbaacılık,
Ankara.
Martin SA(1988). Manipulation of ruminal fermentation with organic acids: a review, J. Anim. Sci. 76: 3123-3132.
Martinez A, Church DC (1970). Effect of various mineral elements on in
vitro rumen cellulose digestion, J. Anim. Sci., 31(5) :982-990. DOI:
2527/jas1970.315982x
Menke KH, Raab L, Salewski A, SteingassH, Fritz D, Schneider W(1979).
The estimation of the digestibility and metabolizable energy content
of ruminant feedstuffs from the gas production when they are incubated with rumen liquor. J. Agric. Sci. 93: 217- 222.
Mohammed N, Lila ZA, Ajisaka N, Hara K, Mikuni K, Hara K, Kanda S,
Itabashi H(2004). Inhibition of ruminal microbial methane production by beta-cyclodextrin iodopropane, malate and their combination
in vitro. J. Anim. Physiol. Anim. Nutr. 88(5-6):188-195.
Moss AR, Jouany JP, Newbold J (2000). Methane production by ruminants: Its contribution to global warming. Annal Zootechnology, 49:
-253.
Mutlu M, Yıldız A (2020). Bıldırcın rasyonlarında yonca unu ve enzim
kullanımının performans, karkas ve ince bağırsak parametrelerine etkisi. Türk Tarım - Gıda Bil ve Tek Derg, 8(6): 1353-1358.
Nielsen FH (1997). Boron in human and animal nutrition. Plant and Soil,
: 199-208.
Ogimoto K, Imai S (1981). Atlas of Rumen Microbiology. Japan Scientific
Societies Press, Tokyo.
Pellikaan WF, Hendriks WH, UwimanaG, Bongers LJGM, Becker
PM, Cone JW(2011). A novel method to determine simultaneously
methane production during in vitro gas production using fully automated equipment. Anim. Feed Sci. Technol. 168 (3-4): 196-205.
DOI:10.1016/j.anifeedsci.2011.04.096
Sallam SMA, Nasser MEA, El-Waziry AM, Bueno ICS, Abdalla AL
(2007). Use of an in vitro rumen gas production technique to evaluate
some ruminant feedstuffs. J. Appl. Sci. Res, 3(1): 34-41.
Sharma A, Mani V, Pal RP, Sarkar S, Sharma H, Yadav S, Datt
C(2022). Effect of boron supplementation on nutrient utilization and
productive performance of peripartum Murrah Buffaloes. Biol Trace
Elem Res, 200 :4303-4315. DOI: 10.1007/s12011-021-03038-w
Sizmaz O, Koksal B, Yildiz G(2017). Rumen microbial fermentation, protozoan abundance and boron availability in yearling rams fed diets
with different boron concentrations. J Anim Feed Sci. 26(1): 59-64.
DOI: 10.22358/jafs/69038/2017
Spears JW(2003). Trace mineral bioavailability in ruminants. J Nutr.
:1506-1509
SPSS(2011).Statistical Packages for the Social Sciences, 20th edn., IBM Inc,Chicago, USA.
Steinfeld, H, Geber P, Wassenaar T, Castel V, Rosales M, De Haan,
C.(2006). Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of United Nations, 82-114.
Steingass, H., Menke, K.(1986). Schätzung des energetischen Futterwertes aus der in vitro mit Pansensaft bestimmten Gasbildung und
der chemischen Analyse. 1. Untersuchungen zur Methode. Tierernährung, 14, 251-270.
Tekeli A, Yıldız G, Drochner W, Steingass H(2010). The Influence of addition of some plant extracts on TMR, concantre, and hay on methanogenesis and at 8 and 24. hours volatile fatty acid (VFA) production
in In Vitro Gas Production Test. 22-26 Mart 2010, Tarım Alanında
Türk-alman Araştırma Sonuçları Uluslararası Sempozyum, Hatay.
Van Soest PV, Robertson JB, Lewis B(1991). Methods for dietary fiber,
neutral detergent fiber, and nonstarch polysaccharides in relation to
animal nutrition. J. Dairy Sci. 74(10): 3583-3597.
Yakıncı ZD, Kök M(2016). Borun sağlık alanında kullanımı. İnönü
Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 4 (1):
-44.
Yeşilbağ D (2008). Hayvan beslemede bor kullanımının önemi. Uludag
University J. Fac. Vet. Med. 27(1-2):61-68.
Yılmaz MT (2012). Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turk J Med Sci, 42 (2): 1423-1429
Most read articles by the same author(s)