The Nasal carriage, microbial resistance and genetic characterization of Staphylococcus aureus in cows in Turkey


Published: Jul 10, 2024
Updated: 2024-07-10
Versions:
2024-07-10 (2)
Keywords:
microbial resistance cow nasal swab Staphylococcus aureus
H Abughonem
B Halac
AI Kekec
B Maslak
AF Bağğacigil
Abstract

The aim of this study is to determine the isolation rates of S. aureus from nasal swabs of healthy cattle, antibiotic resistance profiles of isolates and to investigate the resistance genes associated with antibiotic resistance. For this purpose; 250 nasal swab samples collected from healthy dairy cattle in farms located in four different provinces (Istanbul, Bursa, Kırklareli and Tekirdağ) examined for S. aureus. S.aureus was isolated from 7.6% (n=19) of the examined cows. Antibiotic susceptibility of isolates was determined by disc diffusion method. The isolates were resistant to penicillin (78.95%); tetracycline (68.42%); erythromycin (63.16%); doxycycline (36.84%); cefaperazone (31.58%); cefoxitin (26.32%); ceftiofur (26.32%) and clindamycin (21.05%), while all were sensitive to penicillin-novobiocin, linezolid, quinupristin-dalfopristin, chloramphenicol, gentamicin, trimethoprim-sulphametoxazole and enrofloxacin. It was determined that 5 of 12 isolates resistant to erythromycin had inducible clindamycin resistance. Antibiotic resistance genes and pvl gene were examined by Polymerase Chain Reaction method. The most common genes detected in the isolates were blaZ (93,33%), mecA (52.63%), tetL (23,08%), tetK (53,85%), ermB (8,33%) and ermC (41,67%). ermA, tetM, tetO and pvl genes were not detected in any of the isolates. In our study, the most common type of SCCmec was found to be type IV 90% (n=9) and only one isolate type I 10% (n=1).

Article Details
  • Section
  • Articles
Downloads
Download data is not yet available.
References
Agabou A, Ouchenane Z, Ngba Essebe C, Khemissi S, Chehboub M T E,
Chehboub I B, et al (2017). Emergence of nasal carriage of ST80 and
ST152 pvl+ Staphylococcus aureus isolates from livestock in Algeria.
Toxins 9(10): 303.
Awad A, Ramadan H, Nasr S, Ateya A, Atwa S (2017). Genetic Characterization, Antimicrobial Resistance Patterns and Virulence Determinants of Staphylococcus aureus Isolated form Bovine Mastitis. Pak.
J. Biol. Sci. PJBS 20(6): 298-305.
Bagcigil FA, Moodley A, Baptiste KE , Jensen VF, Guardabassi L (2007).
Occurence, species distrubution, antimicrobial resistance and clonality of methicillin- and erythromycin resistant staphylococci in the
nasal cavity of domestic animals. Vet. Microbiol. 121 (3-4): 307-315.
Ben Slama K, Gharsa H, Klibi N, Jouini A, Lozano C, Gómez-Sanz E,
et al (2011). Nasal carriage of Staphylococcus aureus in healthy humans with different levels of contact with animals in Tunisia: genetic
lineages, methicillin resistance, and virulence factors. Eur. J. Clin.
Microbiol. Infect. Dis. 30(4): 499-508.
Boubaker IBB, Abbes RB, Abdallah HB, Mamlouk K, Mahjoubi F, Kammoun A (2004). Evaluation of a cefoxitin disk diffusion test for the
routine detection of methicillin-resistant Staphylococcus aureus.
Clin. Microbiol. Infect. 10(8): 762-765.
Boye K, Bartels MD, Andersen IS, Møller J A, Westh H (2007). A new
multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I-V. Clin. Microbiol. Infect. 13(7):
-727.
Brakstad OG, Aasbakk K, Maeland JA (1992). Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc
gene. J. Clin. Microbiol. 30(7): 1654-1660.
Center SI (2012). Occurrence of methicillin-resistant Staphylococcus aureus in milk samples from Serbian cows with subclinical mastitis. Afr.
J. Microbiol. Res. 6(29): 5887-5889.
Chajęcka-Wierzchowska W, Zadernowska A, Nalepa B, et al (2014). Retail ready-to-eat food as a potential vehicle for Staphylococcus spp.
harboring antibiotic resistance genes. J. Food Prot. 77(6): 993-998.
CLSI/NCCLS Document M100-ED28 (2018). Clinical and Laboratory
Standards Institute/NCCLS: Performance Standards for Antimicrobial Susceptibility Testing- Nineteenth Informational Supplement.
Clinical and Laboratory Standards Institute, Wayne, Pennsylvania.
CLSI/NCCLS Document VET01S-ED5 (2020). Clinical and Laboratory
Standards Institute/NCCLS: Performance Standards for Antimicrobial Susceptibility Testing- Nineteenth Informational Supplement. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania.
Das G, Lalnunpuia C, Sarma K, Behera SK, Dutta TK, Bandyopadhyay
S (2015). Prevalence of Staphylococcus aureus associated sub-clinical mastitis in crossbred cows in Mizoram. Ruminant Science. 4(2):
-170.
Dastmalchi Saei H, Panahi M (2020). Genotyping and antimicrobial resistance of Staphylococcus aureus isolates from dairy ruminants: differences in the distribution of clonal types between cattle and small
ruminants. Arch. Microbiol. 202(1): 115-125.
Dilsiz B (2010). subklinik mastitisli inek sütlerinden izole edilen staphylococcus aureus suşlarında metisilin direncinin fenotipik ve genotipik
araştırılması. Yüksek lisans tezi, Mustafa Kemal Üniversitesi, Sağlık
Bilimleri Enstitüsü, Hatay.
Duyuk M (2018). Çiğ inek sütlerinde Staphylococcus aureus etkeninin
izolasyonu, identifikasyonu ve antibiyotik duyarlılığının belirlenmesi. Yüksek lisans tezi, Adnan Menderes Üniversitesi, Sağlık Bilimleri
Enstitüsü, Aydın.
Erdem Z, Türkyılmaz S (2013). Molecular typing of methicillin resistant
Staphylococcus aureus strains isolated from cows and farm workers.
Kafkas Univ Vet Fak Derg 19(6): 963-968.
Feßler A, Scott C, Kadlec K, Ehricht R, Monecke S, Schwarz S (2010).
Characterization of methicillin-resistant Staphylococcus aureus
ST398 from cases of bovine mastitis. J. Antimicrob. Chemother.
(4): 619-625.
Feng YANG, Qi WANG, Wang XR, Ling WANG, et al (2016). Genetic
characterization of antimicrobial resistance in Staphylococcus aureus
isolated from bovine mastitis cases in Northwest China. J. Integr.
Agric. 15(12): 2842-2847.
Gao J, Ferreri M, Yu F, Liu X, Chen L, Su J, Han B (2012). Molecular
types and antibiotic resistance of Staphylococcus aureus isolates from
bovine mastitis in a single herd in China. Vet. J. 192(3): 550-552.
Gharsa H, Sallem RB, Slama KB, Gómez-Sanz E, Lozano C, et al (2012).
High diversity of genetic lineages and virulence genes in nasal Staphylococcus aureus isolates from donkeys destined to food consumption in Tunisia with predominance of the ruminant associated CC133
lineage. BMC Vet. Res. 8(1): 203.
Gharsa H, Ben Slama K, Gomez-Sanz E, Lozano C, Zarazaga M, et al
(2015). Molecular characterization of Staphylococcus aureus from
nasal samples of healthy farm animals and pets in Tunisia. Vector
Borne Zoonotic Dis. 15:109-115.
Güler L, Ok Ü, Gündüz K, Gülcü Y Hadimli HH (2005). Antimicrobial
susceptibility and coagulase gene typing of Staphylococcus aureus
isolated from bovine clinical mastitis cases in Turkey. J. Dairy Sci.
(9): 3149-3154.
Hazımoğlu Ş, (2011). Staphylococcus aureus suşlarında Panton-Valentine
Lökosidin (pvl) genlerinin araştırılması. doktora tezi, Adnan Menderes Üniversitesi Sağlık Bilimleri Enstitüsü, Aydın.
Huber H, Koller S, Giezendanner N, Stephan R, Zweifel C (2010). Prevalence and characteristics of meticillin-resistant Staphylococcus aureus in humans in contact with farm animals, in livestock, and in food
of animal origin, Switzerland, 2009. Euro Surveill 15(16): 19542.
Kariyama R, Mitsuhata R, Chow JW, Clewell DB, Kumon H (2000).
Simple and reliable Multiplex-PCR assay for surveliance isolates of
vancomycin-resistant enterococci. J. Clin. Microbiol. 38: 3092-3095.
Kaynarca S (2009). sığır mastitislerinden izole edilen stafilokoklarda metisilin direnci ve slaym pozitifliği. Yüksek lisans tezi. Aydın Adnan
Menderes Üniversitesi, Sağlık Bilimleri Enstitüsü, Aydın.
Khan A, Firyal S, Khan I, Awan AR, Tayyab M, et al (2020). Phenotypic
and genotypic characterization of beta-lactams resistant Staphylococcus aureus isolates from bovine mastitis and its zoonotic implications.
Pak. Vet. J. 40(4): 523-526.
Kim TJ, Na YR, Lee JI (2005). Investigations into the basis of chloramphenicol and tetracycline resistance in Staphylococcus intermedius
isolates from cases of pyoderma in dogs. J. Vet. Med Series B 52(3):
-124.
Kondo Y, Ito T, Ma X X, Watanabe S, Kreiswirth B N, Etienne J, Hiramatsu K (2007). Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system
for mec, ccr, and major differences in junkyard regions. Antimicrob.
Agents Chemother. 51(1): 264-274.
Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F, Etienne J
(1999). Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob.
Agents Chemother. 43(5): 1062-1066.
Lina G, Piémont Y, Godail-Gamot F, et al (1999). Involvement of Panton-Valentine Leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29:1128-32.
Luini M, Cremonesi P, Magro G, Bianchini V, Minozzi G, Castiglioni
B, Piccinini R (2015). Methicillin-resistant Staphylococcus aureus
(MRSA) is associated with low within-herd prevalence of intra-mammary infections in dairy cows: Genotyping of isolates. Vet. Microbiol.
(3-4): 270-274.
Martineau F, Picard FJ, Grenier L, Roy PH, Ouellette M, Bergeron M G
(2000). Multiplex PCR assays for the detection of clinically relevant
antibiotic resistance genes in staphylococci isolated from patients
infected after cardiac surgery. J. Antimicrob. Chemother. 46(4): 527-
Martini CL, Lange CC, Brito MA, Ribeiro JB, Mendonça LC, Vaz E K
(2017). Characterisation of penicillin and tetracycline resistance in
Staphylococcus aureus isolated from bovine milk samples in Minas
Gerais, Brazil. J. Dairy Res. 84(2): 202-205.
Mistry H, Sharma P, Mahato S, Saravanan R, Kumar P A, Bhandari V
(2016). Prevalence and characterization of oxacillin susceptible mecA-positive clinical isolates of Staphylococcus aureus causing bovine
mastitis in India. PLoS One. 11(9): e0162256.
Mourabit N, Arakrak A, Bakkali M, Zian Z, Bakkach J, Laglaoui A
(2020). Nasal carriage of Staphylococcus aureus in farm animals and
breeders in north of Morocco. BMC Infect. Dis. 20(1): 1-6.
Murakami K, Minamide W, Wada K, Nakamura E, Teraoka H, Watanabe S
(1991). Identification of methicillin-resistant strains of staphylococci
by polymerase chain reaction. J. Clin. Microbiol. 29(10): 2240-2244.
Nunes SF, Bexiga R, Cavaco LM, Vilela CL (2007). Antimicrobial susceptibility of Portuguese isolates of Staphylococcus aureus and Staphylococcus epidermidis in subclinical bovine mastitis. J. Dairy Sci.
(7): 3242-3246.
Papadopoulos P, Angelidis AS, Papadopoulos T, Kotzamanidis C, et al
(2019). Staphylococcus aureus and methicillin-resistant S. aureus
(MRSA) in bulk tank milk, livestock and dairy-farm personnel in
north-central and north-eastern Greece: Prevalence, characterization
and genetic relatedness. Food Microbiol. 84: 103249.
Prashanth K, Rao KR (2011). Genotypic characterisation of S. aureus obtained from humans and bovine mastitis samples in India. J. Glob.
Infect. Dis. 3(2):115-22.
Rahimi H , Saei HD, Ahmadi M (2015). Nasal carriage of Staphylococcus
aureus: Frequency and antibiotic resistance in healthy ruminants. Jundishapur J.Microbiol. 8(10).
Rossi BF, Bonsaglia ECR, Castilho IG, Dantas STA, et al (2019) Genotyping of long term persistent Staphylococcus aureus in bovine subclinical mastitis. Microb. Pathog. 132: 45-50.
Russi NB, Bantar C, Calvinho LF (2008). Antimicrobial susceptibility
of Staphylococcus aureus causing bovine mastitis in Argentine dairy
herds. Rev. Argent. Microbiol. 40: 116-119.
Saidi R, Cantekin Z, Khelef D, Ergün Y, Solmaz H, Kaidi R (2015). Antibiotic susceptibility and molecular identification of antibiotic resistance genes of staphylococci isolated from bovine mastitis in Algeria.
Kafkas Univ Vet Fak Derg 21 (4): 513-520.
Santos RP, Souza FN, Oliveira ACD, De Souza Filho AF, et al (2020).
Molecular typing and antimicrobial susceptibility profile of Staphylococcus aureus isolates recovered from bovine mastitis and nasal
samples. Animals, 10(11), 2143.
Tanrıbuyurdu E (2014). Sığır mastitislerinden izole edilen staphylococcus
aureus suşlarında biofilm oluşumu ve antibiyotiklere dirençliliğinin
belirlenmesi. Yüksek lisans tezi, Aydın Adnan Menderes Üniversitesi, Aydın.
Türkyılmaz S, Tekbıyık S, Oryasin E, Bozdogan B (2010). Molecular
epidemiology and antimicrobial resistance mechanisms of methicillin-resistant Staphylococcus aureus isolated from bovine milk. Zoonoses Public Health 57:197-203
Ünal N, Yıldırım M (2010). İneklerin süt, meme başı derisi ve burun mukozalarından izole edilen stafilokok türlerinin antibiyotik direnç profilleri. Kafkas Univ Vet Fak Derg 16: 389-396.
Ünal N (2013). Subklinik mastitisli inek sütlerinden izole edilen Staphylococcus aureus izolatlarında bazı toksin genleri ve metisilin direnç
geninin araştırılması. Ank. Univ. Vet. Fak. Derg. 60: 21-26.
Yang F, Wang Q, Wang X, Wang L, et al (2015). Prevalence of blaZ gene
and other virulence genes in penicillin-resistant Staphylococcus aureus isolated from bovine mastitis cases in Gansu, China. Turkish J.
Vet. Anim. Sci. 39(5): 634-636.
Zehra A, Singh R, Kaur S, Gill JPS (2017). Molecular characterization of
antibiotic-resistant Staphylococcus aureus from livestock (bovine and
swine). Vet. World 10(6): 598
Most read articles by the same author(s)