Canola oil and/or linseed oil improved growth performance, immunephysiological and metabolic responses of Nile tilapia plant oils improved tilapia health


Published: Jul 11, 2024
Keywords:
Nile tilapia canola oil linseed oil growth performance ; immune-physiological response
AS Abdelhamid
AM Elnokrashy
NA Ebied
SH Al-Deriny
MF Abdelkader
NA Abozahra
RA Mohamed
Abstract

This study aimed to evaluate the synergistic effect of canola oil (CO) and linseed oil (LO) on growth performance, blood health, immune-oxidative status, and intestinal morphometry of Nile tilapia, Oreochromis niloticus fingerlings. Fish (n=270, 9.865±0.343g) were randomly distributed in 18 hapas in triplicates at a rate of 15 fish per replicate. Fish were divided into six groups: (1) fish received only basal diet (control group, CG), (2) basal diet containing 0.25%  canola oil (CO 0.25%), (3) basal diet containing 0.5 % canola oil (CO 0.5%), (4) basal diet containing 1.0%  canola oil (CO 1%), (5)  basal diet containing 2% linseed oil (LO 2%), (6) basal diet containing a mixture of canola oil 0.1% and linseed oil 0.1% (CO1 x LO1%). The results showed that the fish that received CO and/or LO had significantly (p<0.05) better growth performance, including final weight, weight gain, specific growth rate, and feed conversion ratio, than CG. The best results were found in fish that received CO/LO. Hematological and biochemical profiles were conducted and showed that dietary CO and/or LO increased red blood cells, hemoglobin, white blood cells, total protein, globulin, cholesterol, triglycerides, and decreased lymphocytes and creatinine compared with CG (p<0.05) with the best findings in CO/LO.  Antioxidant enzymes (increased catalase, superoxide dismutase, and reduced malonaldehyde), digestive enzymes (lipase and amylase), immune response (lysozyme and phagocytic index), and intestinal morphometry were improved when fish received CO and/or LO with the best results in CO/LO. To conclude, dietary incorporation of CO and/or LO improved growth performance, blood health, immune-oxidative status, and intestinal morphometry of Nile tilapia fingerlings. The best findings were reported in fish received CO/LO.

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
References
Abdel-Rahim M.M., Elhetawy A.I., Mansour A.T., Mohamed R.A., Lotfy
A.M., Sallam A.E., Shahin S.A. (2023). Effect of long-term dietary
supplementation with lavender, Lavandula angustifolia, oil on European seabass growth performance, innate immunity, antioxidant status, and organ histomorphometry. Aquac. Inter.,1-19.
Abdel-Tawwab M., Samir F., Abd El-Naby A.S., Monier M.N. (2018).
Antioxidative and immunostimulatory effect of dietary cinnamon
nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.) and its susceptibility to hypoxia stress and Aeromonas
hydrophila infection. Fish shellfish immunol., 74: 19-2.
Abozeid A.M., Abdel‐Rahim M. M., Abouelenien F., Elkaradawy A, M.
R. A. (2021). Quillaja saponaria and/or Yucca schidigera ameliorate
water quality, growth performance, blood health, intestine and gills
histomorphology of Nile tilapia, Oreochromis niloticus. Aquac. Res.,
: 1-15.
AOAC. (2007). Official methods of analysis of the Association of Official
Analytical Chemists, Washington, DC.
Bell J.G. and Koppe W. (2010). Lipids in aquafeeds. Fish oil replacement
and alternative lipid sources in aquaculture feeds , pp.21-59.
Castro C. O., Castro C., Couto A., Serra C. R., & Fernandes R. (2015).
Effects of fish oil replacement by vegetable oil blend on digestive
enzymes and tissue histomorphology of European sea bass (Dicentrarchus labrax) juveniles. Fish Physiol Biochem., 41: 1-15.
Council N. R. (2011). Nutrient requirements of fish and shrimp. National
Academies Press, Washington.
Cottrell R.S., Blanchard J.L., Halpern B.S., Metian M., Froehlich H.E.
(2020). Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food, 1(5), 301-308.
Dacie J. V., Lewis S. (1991). Practical haematology, ELBS with Churchill
Livingston. Churchil Livingstone.
De Pablo M.A., Álvarez De Cienfuegos G. (2000). Modulatory effects
of dietary lipids on immune system functions. Immunol. Cell Biol.,
: 31-39.
Demers N.E., Bayne C.J. (1997). The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev Comp Immunol.,
(4): 363-373.
Dougherty, R.M.; Galli, C.; Ferro-Luzzi, A., Iacono, J. M. (1987). Lipid
and phospholipid fatty acid composition of plasma, red blood cells,
and platelets and how they are affected by dietary lipids: A study of
normal subjects from Italy, Finland, and the USA. Am. J. Clin. Nutr.,
: 443-455.
Doumas B.T., Bayse D.D., Carter R.J., Peters T. S. R. (1981). candidate
reference method for determination of total protein in serum. I. Development and validation. Clin.Chemi., 27(10): 1642-1650.
Dumas B.T., Biggs H. G. (1972). Standard Methods of Clinical Chemistry. Ed., Academic Press, New York.
Dupont-Cyr B.A., Le François N.R., Christen F., Desrosiers V., Savoie
A., Vandenberg G.W., Dufresne F., Blier, P.U. (2022). Linseed oil as
a substitute for fish oil in the diet of Arctic charr (Salvelinus alpinus),
brook charr (S. fontinalis) and their reciprocal hybrids. Aquac. Rep.,
, 100949.
Elkadom E.M., Abd El-Kader M.F., Bakr B.A., Abozeid A.M., Mohamed, R.A. (2023). Impacts of various single and mixed colors of
monochromatic LED light on growth, behavior, immune-physiological parameters, and liver and brain histology of Nile tilapia fingerlings. Aquaculture, 577, 740007.
Elkaradawy A., Abdel-Rahim M.M., R. A. M. (2022). Quillaja saponaria
and / or linseed oil improved growth performance, water quality ,
welfare profile and immune- oxidative status of Nile tilapia , Oreochromis niloticus fingerlings. Aquac. Res., 53: 576-589.
FAO (2020). The State of Food and Agriculture 2020; FAO: Rome, Italy.
FAO Yearbook. Fishery and Aquaculture Statistics. (2022). The state of
world fisheries and aquaculture production 2020, table number 1 (p.3)
and table number 7 (p. 30).
Fountoulaki E., Vasilaki A., Hurtado R., Grigorakis K., Karacostas
I., Nengas I., Rigos G., Kotzamanis Y., Venou B., & Alexis M. N.
(2009). Fish oil substitution by vegetable oils in commercial diets
for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile Recovery of fatty acid
profiles by a fish oil finishing diet under fluctuating water temperatures. Aquaculture, 289: 317-326.
Francis D. S., Turchini G. M., Jones P. L., & De Silva S. S. (2006). Effects
of dietary oil source on growth and fillet fatty acid composition of
Murray cod, Maccullochella peelii peelii. Aquaculture, 253: 547-556.
García-Meilán I., Fontanillas R., Gutiérrez J., Capilla E., Navarro I., Gallardo, Á. (2023). Effects of Dietary Vegetable Oil Mixtures including
Soybean Oil on Intestinal Oxidative Stress in Gilthead Sea Bream
(Sparus aurata). Animals, 13(6),1069.
Gutiérrez S., Svahn S.L., Johansson, M. (2019). Effects of Omega-3 Fatty
Acids on Immune Cells. Int. J. Mol. Sci., 20: 5028.
Heinegård D, T. G. (1973). Determination of serum creatinine by a direct
colorimetric method. Clinica chimica acta, 43(3): 305-310.
Huang X., Chen F., Guan J., Xu, C., & Li Y. (2022). Beneficial effects
of re-feeding high α -linolenic acid diets on the muscle quality, cold
temperature and disease resistance of tilapia. Fish Shellfish Immunol., 126: 303-310.
Kawahara E., Ueda T. and Nomura S. (1991). In vitro phagocytic activity
of white-spotted char blood cells after injection with Aeromonas salmonicida extracellular products. Fish Pathology, 26(4): pp.213-214.
Kiron V., Thawonsuwan J., Panigrahi A., Scharsack J.P., Satoh S. (2011).
Antioxidant and immune defences of rainbow trout (Oncorhynchus
mykiss ) offered plant oils differing in fatty acid profiles from early
stages. Aquac Nutr., 17: 130 - 140.
Li F. J., Lin X., Lin S. M., Chen W. Y., & Guan Y. (2016). Effects of
dietary fish oil substitution with linseed oil on growth, muscle fatty
acid and metabolism of tilapia (Oreochromis niloticus). Aquac Nutr.,
(3): 499-508.
Stoskopf M. (1993). Anatomy and physiology of sharks. Fish Medicine.
Stoskopf, MK (Ed), WB Saunders Co., Philadelphia, Pennsylvania:
Ma Q., Li L., Le J., Lu D., Qiao F., Zhang M., & Du Z. (2018). Dietary microencapsulated oil improves immune function and intestinal health
in Nile tilapia fed with high-fat diet. Aquaculture, 496: 19-29.
Mahmoud B. S. M., & Miyashita K. (2010). Essential oils: natural antimicrobials for fish preservation. Mississippi, USA, Academic Press,
-225 pp. ref.67
Mohammadi M., Imani A., Farhangi M., Gharaei A., & Hafezieh M.
(2020). Replacement of fishmeal with processed canola meal in diets for juvenile Nile tilapia (Oreochromis niloticus ): Growth performance , mucosal innate immunity , hepatic oxidative status , liver and
intestine histology. Aquaculture, 518: 734824.
Mohamed R.A., Yousef Y.M., El‐Tras W.F., Khalafallaa M.M. (2021).
Dietary essential oil extract from sweet orange (Citrus sinensis) and
bitter lemon (Citrus limon) peels improved Nile tilapia performance
and health status. Aquac. Res., 52(4), 1463-1479.
Mourente G., Good J. E., & Bell J. G. (2005). Partial substitution of fish
oil with rapeseed, linseed and olive oils in diets for European sea bass
( Dicentrarchus labrax L .): effects on flesh fatty acid composition ,
plasma prostaglandins E 2 and F 2 a , immune function and effectiveness of a fish. Aquac Nutr. 11: 25-40.
Nakharuthai C., Rodrigues P. M., Schrama D., Kumkhong S., & Boonanuntanasarn S. (2020). Effects of Different Dietary Vegetable Lipid
Sources on Health Status in Nile Tilapia (Oreochromis niloticus):
Haematological Indices, Immune Response Parameters and Plasma
Proteome. Animals, 10: 1-19.
Orsavova J., Misurcova L., Vavra Ambrozova J., Vicha R. and Mlcek J.
(2015). Fatty acids composition of vegetable oils and its contribution
to dietary energy intake and dependence of cardiovascular mortality
on dietary intake of fatty acids. Int J Mol Sci., 16(6): pp.12871-12890.
Peng X., Li F., & Lin S. (2016). Effects of total replacement of fish oil
on growth performance, lipid metabolism and antioxidant capacity in
tilapia (Oreochromis niloticus). Aquac. Inter., 24: 145-156.
Rahimi S., Kathariou S., Fletcher O., Grimes J. L. J. P. s. (2019). Effect
of a direct-fed microbial and prebiotic on performance and intestinal
histomorophology of turkey poults challenged with Salmonella and
Campylobacter.Poult sci., 98: 6572-6578.
Reitman S., Frankel S. (1957). A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am J Clin Pathol., 28(1), 56-63.
Rosenlund G., Obach A., Sandberg M. G., Standal H., & Tveit K. (2001).
Effect of alternative lipid sources on long-term growth performance
and quality of Atlantic salmon (Salmo salar L .). Aquac. Res., 32:
-328.
Rossetto V., Karla B., Tsujii M., Dena L., Barriviera L., Paola F., Paulovski A., Antônio J., Miranda G., Tolentino M., Wilson M., & Furuy M.
(2021). Substitution of soybean oil with linseed oil on growth performance , fatty acid profile and texture attributes in large Nile tilapia
, Oreochromis niloticus reared under cold suboptimal temperature.
Aquac. Res., 53: 5136-5145.
Soltan M. A. (2005). Potential of using raw and processed canola seed
meal as an alternative fish meal protein source in diets for nile tilapia
(Oreochromis niloticus). Egypt J Nutr Feed, 8(1): 1111-1128.
Sutili F. J., Iii D. M. G., Heinzmann, B. M., & Baldisserotto, B. (2018).
Plant essential oils as fish diet additives: benefits on fish health and
stability in feed. Rev. Aquac., 10: 716-726.
Suvarna K.S., Layton C., Bancroft J. D. (2018). Bancroft’s theory and
practice of histological techniques E-Book. Elsevier Heal Sc.
Taşbozan O., Gökįe M.A., Erbaş C., Özcan, F. (2015). Effect of Different
Concentrations of Canola Oil in Diets on Body Chemical Composition and Growth Performance of Nile Tilapia (Oreochromis niloticus,
Linnaeus 1758). Pakistan J. Zool, 47(6),1761-1769.
Taylor P., Mulligan B., & Trushenski J. (2013). Use of Standard or Modified Plant-Derived Lipids as Alternatives to Fish Oil in Feeds for
Juvenile Nile Tilapia. J Aquat Food Prod Technol., 22(1): 47-57.
Taylor P., Yildirim-aksoy M., Lim C., Davis D. A., Shelby R., Phillip
H., & Davis D. A. (2012). Influence of Dietary Lipid Sources on the
Growth Performance, Immune Response and Resistance of Nile Tilapia , Oreochromis niloticus , to Streptococcus iniae Challenge. J Appl
Aquac., 19(2): 37-41.
Thrall M, Baker D, L. E. (2004). Veterinary Haematology and Clinical
Chemistry Lippincott Williams and Wilkins. Philadelphia, USA.
Tocher D. R. (2003). Tocher, D.R. Metabolism and Functions of Lipids
and Fatty Acids in Teleost. Rev. Fish Sci. 2003, 11: 107- 184.
Turchini G. M., Moretti V. M., Hermon K., Caprino F., Busetto M. L., Bellagamba F., Rankin T., Keast, R. S. J., & Francis D. S. (2013). Monola
oil versus canola oil as a fish oil replacer in rainbow trout feeds: Effects on growth , fatty acid metabolism and final eating quality. Food
Chem., 141(2): 1335-1344.
Turchini G. M., Torstensen B. E., & Ng W. (2009). Fish oil replacement in
finfish nutrition. Rev. Aquac., 1: 10-57.
Turchini G.M., Francis D.S., Senadheera S.P.S.D., Thanuthong T. & De
Silva S.S. (2011) Fish oil replacement with different vegetable oils in
Murray cod: evidence of an ‘omega-3 sparing effect’ by other dietary
fatty acids. Aquaculture, 315: 250-259.
Wall R., Ross R. P., Fitzgerald G. F., & Stanton C. (2010). Fatty acids from
fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev., 68(5): 280-289.
Wang B., Thompson K. D., Bondad-reantaso M. G., Surachetpong W.,
& Tattiyapong P. (2022). Strategies to enhance tilapia immunity to
improve their health in aquaculture. Rev. Aquac. 10: 1-16.
Wassef E. A., Wahbi O. M., Saqr, E. M., & Saleh N. E. (2016). Response
of European seabass (Dicentrarchus labrax) to canola oil diets: effect
on growth performance, fish health and liver and intestine histomorphology. Aquac. Inter., 24(4): 1073-1088.
Wei B., Yang Z., Cheng Y., Wang J., & Zhou J. (2018). Effects of the
complete replacement of fish oil with linseed oil on growth, fatty acid
composition, and protein expression in the Chinese mitten crab (Eriocheir sinensis). Proteome Sci., 16(1): 6.
Yildiz M, Eroldogan OT, Engin K, Gulcubuk A, B. M. (2013). Effects of
dietary cottonseed and/or canola oil inclusion on the growth performance, FA composition and organ histology of the juvenile rainbow
trout, Oncorhynchus mykiss. Turkish J Fish and Aquatic Sci., 13: 453-
Zhou Q., & Yue Y. (2010b). Effect of replacing soybean meal with canola
meal on growth, feed utilization and haematological indices of juvenile hybrid tilapia , Oreochromis niloticus x Oreochromis aureus.
Aquac. Res., 41: 982-990