Annealing temperatures affect 16S rRNA gene-amplicon Illumina sequencingbased bacterial community analysis of canine skin


Veröffentlicht: Απρ 12, 2023
Versionen:
2023-04-12 (1)
N Apostolopoulos
https://orcid.org/0000-0001-9749-0795
N Thom
R Bagwe
RR Müller
C Ewers
PS Glaeser
Abstract

Analysis of the bacterial community structure of dog skin samples, sequencing the 16S rRNA gene is nowadays widely used. Among others, the 16S rRNA gene amplicon Illumina sequencing technique is well established and routinely applied to get a first inside into the bacterial community diversity and taxonomic composition. However, as it is a molecular-based technique, bias due to methodology is possible and should be minimized. In this study, we tested the effects of annealing temperature (50°C vs 55°C) on the 16S rRNA gene amplicon analysis of the bacterial microbiota of skin and ear canal samples from a German shepherd dog. Although beta diversity was not affected by the higher annealing temperature, alpha diversity values showed a shift (overall diversity (Shannon) and evenness were increased, whereas dominance (D), number of taxa (S), richness (Chao 1) and the total numbers of individuals (N) were reduced, with higher annealing temperature). The biological relevance of this finding remains unclear. Thus, our results underline the importance of optimal annealing temperature in order to minimize bias, as well as the necessity of further similar studies with a larger sample size.

Article Details
  • Rubrik
  • Short Communication
Downloads
Keine Nutzungsdaten vorhanden.
Autor/innen-Biografie
N Apostolopoulos, Department of Dermatology, Small Animal Clinic - Internal Medicine, Justus Liebig University, Giessen, Germany

DVM (Univ. Thessaly, Greece)

diplomate ECVD

Literaturhinweise
Apostolopoulos, N., Glaeser, S.P., Bagwe, R., Janssen, S., Mayer, U., Ewers, C., Kämpfer, P., Neiger, R., Thom, N., 2021. Description and comparison of the skin and ear canal microbiota of non-allergic and allergic German shepherd dogs using next generation sequencing. PLOS ONE 16 (5), e0250695. 10.1371/journal.pone.0250695.
Bray, J.R., Curtis, J.T., 1957. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs 27 (4), 325–349. 10.2307/1942268.
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America 108 Suppl 1, 4516–4522. 10.1073/pnas.1000080107.
Cardona, S., Eck, A., Cassellas, M., Gallart, M., Alastrue, C., Dore, J., Azpiroz, F., Roca, J., Guarner, F., Manichanh, C., 2012. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC microbiology 12, 158. 10.1186/1471-2180-12-158.
Fernandes, A.D., Macklaim, J.M., Linn, T.G., Reid, G., Gloor, G.B., 2013. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLOS ONE 8 (7), e67019. 10.1371/journal.pone.0067019.
Fernandes, A.D., Reid, J.N., Macklaim, J.M., McMurrough, T.A., Edgell, D.R., Gloor, G.B., 2014. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2 (1), 15. 10.1186/2049-2618-2-15.
Friedman, J., Alm, E.J., 2012. Inferring correlation networks from genomic survey data. PLOS Computational Biology 8 (9), e1002687. 10.1371/journal.pcbi.1002687.
Gloor, G.B., Reid, G., 2016. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Canadian journal of microbiology 62 (8), 692–703. 10.1139/cjm-2015-0821.
Gohl, D.M., Vangay, P., Garbe, J., MacLean, A., Hauge, A., Becker, A., Gould, T.J., Clayton, J.B., Johnson, T.J., Hunter, R., Knights, D., Beckman, K.B., 2016. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nature biotechnology 34 (9), 942–949. 10.1038/nbt.3601.
Gołębiewski, M., Tretyn, A., 2020. Generating amplicon reads for microbial community assessment with next-generation sequencing. Journal of applied microbiology 128 (2), 330–354. 10.1111/jam.14380.
Gorvitovskaia, A., Holmes, S.P., Huse, S.M., 2016. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 4 (1), 15. 10.1186/s40168-016-0160-7.
Harper, D.A.T. (Ed.), 1999. Numerical palaeobiology: Computer-based modelling and analysis of fossils and their distributions. Wiley, Chichester, 468 pp.
Hongoh, Y., Yuzawa, H., Ohkuma, M., Kudo, T., 2003. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiology Letters 221 (2), 299–304. 10.1016/S0378-1097(03)00218-0.
Ionescu, D., Siebert, C., Polerecky, L., Munwes, Y.Y., Lott, C., Häusler, S., Bižić-Ionescu, M., Quast, C., Peplies, J., Glöckner, F.O., Ramette, A., Rödiger, T., Dittmar, T., Oren, A., Geyer, S., Stärk, H.-J., Sauter, M., Licha, T., Laronne, J.B., Beer, D. de, 2012. Microbial and chemical characterization of underwater fresh water springs in the Dead Sea. PloS one 7 (6), e38319. 10.1371/journal.pone.0038319.
Ishii, K., Fukui, M., 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Applied and environmental microbiology 67 (8), 3753–3755. 10.1128/AEM.67.8.3753-3755.2001.
Kanagawa, T., 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). Journal of Bioscience and Bioengineering 96 (4), 317–323. 10.1016/S1389-1723(03)90130-7.
Kennedy, K., Hall, M.W., Lynch, M.D.J., Moreno-Hagelsieb, G., Neufeld, J.D., 2014. Evaluating bias of illumina-based bacterial 16S rRNA gene profiles. Applied and environmental microbiology 80 (18), 5717–5722. 10.1128/AEM.01451-14.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic acids research 41 (1), e1. 10.1093/nar/gks808.
Knight, R., Vrbanac, A., Taylor, B.C., Aksenov, A., Callewaert, C., Debelius, J., Gonzalez, A., Kosciolek, T., McCall, L.-I., McDonald, D., Melnik, A.V., Morton, J.T., Navas, J., Quinn, R.A., Sanders, J.G., Swafford, A.D., Thompson, L.R., Tripathi, A., Xu, Z.Z., Zaneveld, J.R., Zhu, Q., Caporaso, J.G., Dorrestein, P.C., 2018. Best practices for analysing microbiomes. Nature reviews. Microbiology 16 (7), 410–422. 10.1038/s41579-018-0029-9.
Krebs, C.J., 1989. Ecological methodology: Second Edition. Harper & Row, New York, NY, 654 pp.
Li, W., Han, L., Yu, P., Ma, C., Wu, X., Moore, J.E., Xu, J., 2014. Molecular characterization of skin microbiota between cancer cachexia patients and healthy volunteers. Microbial ecology 67 (3), 679–689. 10.1007/s00248-013-0345-6.
Lovell, D., Pawlowsky-Glahn, V., Egozcue, J.J., Marguerat, S., Bähler, J., 2015. Proportionality: a valid alternative to correlation for relative data. PLOS Computational Biology 11 (3), e1004075. 10.1371/journal.pcbi.1004075.
Markoulatos, P., Siafakas, N., Moncany, M., 2002. Multiplex polymerase chain reaction: a practical approach. Journal of clinical laboratory analysis 16 (1), 47–51. 10.1002/jcla.2058.
Ondov, B.D., Bergman, N.H., Phillippy, A.M., 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12 (1), 1–10. 10.1186/1471-2105-12-385.
Ong, S.H., Kukkillaya, V.U., Wilm, A., Lay, C., Ho, E.X.P., Low, L., Hibberd, M.L., Nagarajan, N., 2013. Species identification and profiling of complex microbial communities using shotgun Illumina sequencing of 16S rRNA amplicon sequences. PLOS ONE 8 (4), e60811. 10.1371/journal.pone.0060811.
Oyvind Hammer, David A.T. Harper, and Paul D. Ryan, 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis: Palaeontologia Electronica 4(1): 9pp.
Parada, A.E., Needham, D.M., Fuhrman, J.A., 2016. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental microbiology 18 (5), 1403–1414. 10.1111/1462-2920.13023.
Pollock, J., Glendinning, L., Wisedchanwet, T., Watson, M., 2018. The Madness of Microbiome: Attempting To Find Consensus “Best Practice” for 16S Microbiome Studies. Applied and environmental microbiology 84 (7). 10.1128/AEM.02627-17.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41 (D1), D590-D596. 10.1093/nar/gks1219.
Rubin, B.E.R., Gibbons, S.M., Kennedy, S., Hampton-Marcell, J., Owens, S., Gilbert, J.A., 2013. Investigating the impact of storage conditions on microbial community composition in soil samples. PloS one 8 (7), e70460. 10.1371/journal.pone.0070460.
Sergeant, M.J., Constantinidou, C., Cogan, T., Penn, C.W., Pallen, M.J., 2012. High-throughput sequencing of 16S rRNA gene amplicons: effects of extraction procedure, primer length and annealing temperature. PloS one 7 (5), e38094. 10.1371/journal.pone.0038094.
Sipos, R., Székely, A.J., Palatinszky, M., Révész, S., Márialigeti, K., Nikolausz, M., 2007. Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS microbiology ecology 60 (2), 341–350. 10.1111/j.1574-6941.2007.00283.x.
Taguchi, Y.-H., Oono, Y., 2005. Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics (Oxford, England) 21 (6), 730–740. 10.1093/bioinformatics/bti067.
Zeeuwen, P.L., Boekhorst, J., Bogaard, Ellen H van den, Koning, H.D.d., Kerkhof, Peter MC van de, Saulnier, D.M., van Swam, I.I., van Hijum, S.A., Kleerebezem, M., Schalkwijk, J., Timmerman, H.M., 2012. Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biology 13 (11), 1–18. 10.1186/gb-2012-13-11-r101.