Γενετικά τροποποιημένα ζωικά πρότυπα και Οστεοανοσολογία


Δημοσιευμένα: Nov 17, 2017
Λέξεις-κλειδιά:
Λειτουργική Γονιδιωματική διαγονιδιακοί μύες RANKL οστεοανοσολογία οστεοπέτρωση οστεοπόρωση
E. DOUNI (Ε.ΝΤΟΥΝΗ)
Περίληψη

Με την αποκωδικοποίηση του γονιδιώματος του ανθρώπου και άλλων οργανισμών, όπως του μυός, έγινε γνωστή η χρωμοσωμική θέση κάθε γονιδίου, αλλά παραμένει ακόμα άγνωστος ο ρόλος των περισσότερων γονιδίων. ΗΛειτουργική Γονιδιωματική (Functional Genomics) αποτελεί τον νέο κλάδο της Μοριακής Βιολογίας που αποσκοπεί στηνεύρεση της/των λειτουργίας/ιών κάθε γονιδίου με σκοπό την κατανόηση των παθογενετικών μηχανισμών στις διάφορες ασθένειες του ανθρώπου. Ο μυς έχει χρησιμοποιηθεί περισσότερο από κάθε άλλο ζωικό οργανισμό στη βιοϊατρική έρευνα,γιατί εκτός των υπόλοιπων ομοιοτήτων με τον άνθρωπο, το γονιδίωμά του μπορεί να τροποποιηθεί γενετικά σχετικά εύκολα. Κατά τη διάρκεια των τελευταίων δύο δεκαετιών, έγινε δυνατή η δημιουργία σχεδόν κάθε είδους μετάλλαξης στο γονιδίωμά του. Ειδικότερα, η μελέτη των γενετικά τροποποιημένων μυών ανέδειξε την συνεχή αλληλεπίδραση μεταξύ διαφόρωνσυστημάτων, όπως του σκελετικού με το ανοσοποιητικό, εισάγοντας τον διεπιστημονικό τομέα της Οστεοανοσολογίας. Η κυτταροκίνη RANKL αποτελείτο μόριο κλειδί στην Οστεοανοσολογία, ρυθμίζοντας την οστεοκλαστογένεση, ενώ απορρύθμιση της έκφρασης του RANKL οδηγεί σε ασθένειες όπως είναι η οστεοπέτρωση ή οστεοπόρωση. Στο εργαστήριο μας έχουμεπρόσφατα δημιουργήσει, χρησιμοποιώντας τεχνολογίες αιχμής, μοναδικά διεθνώς μοντέλα RANKL-επαγόμενης οστεοπέτρωσης ή οστεοπόρωσης στο μυ. Τα μοντέλα αυτά αποτελούν άριστα συστήματα για τη μελέτη των παθογενετικών μηχανισμών καιγια την αξιολόγηση νέων θεραπευτικών προσεγγίσεων σε προκλινικό επίπεδο.

Λεπτομέρειες άρθρου
  • Ενότητα
  • Special Article
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Αναφορές
Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand
enhance T-cell growth and dendritic-cell function. Nature, 390(6656):175-9.
Branda CS, Dymecki SM (2004) Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. DevCell, 6(l):7-28.
Cook MC, Vinuesa CG, Goodnow CC (2006) ENU-mutagenesis: insight into immune function and pathology. Curr Opin Immunol, 18(5):627-33.
Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C; FREEDOM
Trial (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. Ν Engl J Med, 361(8):756-65.
Douni E, Alexiou M, Kontoyiannis D, Kollias G (2004) Genetic engineering in the mouse: Tuning TNF/TNFR expression. In: Methods in Molecular Medicine, Vol. 98: Tumor Necrosis Factor.
Eds A. Corti and P. Ghezzi. Humana Press Inc., pl39-171.
Douni E, Armaka M, Kontoyiannis DL, Kollias G (2007) Functional genetic and genomic analysis of modeled arthritis. Adv Exp Med Biol, 602:33-42.
Douni E, Makrinou E and Kollias G (2008) Identification of a novel loss-of-function missense mutation in the RANKL gene that causes osteopetrosis in mice. Calcified Tissue International, vol. 82, suppl.l:S57.
Fuller K, Wong B, Fox S, Choi Y, Chambers, TJ (1998) TRANCE is necessary and sufficient for osteoclast-mediated activation of bone resorption in osteoclasts. J Exp Med, 188(5): 997-1001.
Kong, YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 397(6717):315-323.
Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulatesosteoclast differentiation and activation. Cell, 93(2): 165-76.
Mouse Genome Sequencing Consortium. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature, 420:520-562.
Nelms KA, Goodnow CC (2001) Genome-wide ENU mutagenesis toreveal immune regulators. Immunity, 15(3):409-18.
Niti A, Rinotas V, Douni E (2009) A novel humanized RANKL transgenic mouse model of osteoporosis., Bone, vol 44: S423.
Prosser H, Rastan S (2003). Manipulation of the mouse genome: a multiple impact resource for drug discovery and development. Trends Biotechnol, 21(5):224-32.
Rosenthal N, Brown S (2007) The mouse ascending: perspectives for human-disease models. Nat Cell Biol, 9(9):993-9.
Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, Bredius R, Mancini G, Cant A, Bishop N, Grabowski P, Del Fattore A, Messina C, Errigo G, Coxon FP, Scott DI, Teti A,
Rogers MJ, Vezzoni P, Villa A, Helfrich MH (2007) Osteoclastpoor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet, 39(8):960-2.
Walsh M, Kim N, Kadono Y, Rho J, Young Lee S, Lorenzo J, Choi Y (2006) Osteoimmunology: Interplay between the immune system and bone metabolism, Annual Review of Immunology, 24:33-63.