Doxorubicin-induced oxidative stress injury: The protective effect of kumiss on cardiotoxicity


Publicado: Νοε 9, 2022
Actualizado: 2022-11-09
S Yilmaz
https://orcid.org/0000-0001-5472-3560
E Kaya
https://orcid.org/0000-0002-7445-3091
H Yonar
https://orcid.org/0000-0003-1574-3993
AS Mendil
https://orcid.org/0000-0003-2722-3290
Resumen
Bu çalışmanın amacı, doksorubisinin (DOX) neden olduğu kardiyotoksisite üzerine kımızın etkisini araştırmaktı. Yirmi sekiz Wistar-Albino erkek sıçan 4 gruba ayrıldı: Birinci gruba (kontrol) herhangi bir müdahale yapılmadı. İkinci gruba 7 gün gavaj yoluyla 2 ml/kg/gün, üçüncü gruba intraperitoneal DOX, dördüncü gruba kımız+DOX 20 mg/kg tek doz verildi. DOX uygulamasından 7 gün önce Kumiss uygulamasına başlandı ve 7 gün devam edildi. 7 On thkımız uygulamasının ilk gününde intraperitoneal olarak DOX uygulandı. Malondialdehit (MDA), indirgenmiş glutatyon (GSH) seviyeleri ve katalaz (CAT), glutatyon peroksidaz (GSH-Px), süperoksit dismutaz (SOD), glukoz-6-fosfat dehidrojenaz (G6PD) ve glutatyon-S- gibi antioksidan enzimler Kalp ve kan dokularında kardiyotoksisite patogenezindeki etkinliklerini belirlemek için transferaz (GST) aktiviteleri belirlendi. DOX grubu kontrol grubu ile karşılaştırıldığında MDA (p<0,001, p<0,001) ve GSH (p<0,001, p=0,002) düzeylerinde artış ve CAT'de azalma (p=0,001, p<0,001) , GSH-Px (p<0.001, p<0.001), G6PD (p<0.001, p=0.001) ve GST (p=0.003) aktiviteleri bulundu ve SOD aktivitesinde istatistiksel olarak anlamlı fark bulunmadı. Histopatolojik olarak dejenerasyon, nekroz, DOX uygulanan grupta kanama ve ödem gözlendi. DOX ile tedavi edilen grup ile karşılaştırıldığında, DOX ile kımız verilen grupta MDA, GSH düzeyleri ve antioksidan enzim aktivitelerinin kontrol grubu değerlerine ulaştığı görüldü. Sonuç olarak, lipid peroksidasyon ürünlerindeki artış ve antioksidan enzimlerdeki azalmanın, güçlü bir kemoterapötik ilaç olan DOX ile indüklenen kardiyotoksisitenin patogenezinde rol oynayabileceği belirlendi ve kırmızının DOX kaynaklı oksidatif hasara karşı koruduğu gösterildi.
Article Details
  • Sección
  • Research Articles
Descargas
Los datos de descargas todavía no están disponibles.
Biografía del autor/a
S Yilmaz, Firat University

Department of Biochemistry, Faculty of Veterinary Medicine, University of Firat

E Kaya, Firat University

Department of Biochemistry, Faculty of Veterinary Medicine, University of Firat

H Yonar, Selcuk University

Deparment of Biostatistics, Selcuk University, Faculty of Veterinary Medicine

AS Mendil, Erciyes University

Department of Pathology, Faculty of Veterinary Medicine, Erciyes University

Citas
Abdel-Salam AM, Al-Dekheil A, Babkr A, Farahna M, Mousa HM. (2010). High fiber probiotic fermented mare's milk reduces the toxic effects of mercury in rats. North Am Journal Med Sci, 2(12): 569.
Aebi H. Catalase. In: Bergmeyer HU (Editor). Methods of Enzymatic Analysis. 2nd Edition, Weinheim: Verlag Chemie, 1974: 673-678.
Alexieva B, Sainova I, Pavlova V, Markova T, Valkova I, Nikolova E. (2014). Insights into mechanisms of doxorubicin cardiotoxicity. J Phys Pharm Adv, 4(3): 342-348.
Alshabanah OA, Hafe MM, Al-Harbi MM, Hassan ZK, Al Rejaie SS, Asiri YA, Sayed-Ahmed MM. (2010). Doxorubicin toxicity can be ameliorated during antioxidant L-carnitine supplementation. Oxid Med Cell Long, 3(6): 428-433.
Alyane M, Kebsa LBW, Boussenane HN, Rouibah H, Lahouel M. (2008). Cardioprotective effects and mechanism of action of polyphenols extracted from propolis against doxorubicin toxicity. Pakistan J Pharm Sci, 21(3).
Barton CL, 2001. Chemotherapy, in: Small Animal Clinical Pharmacology and Therapeutics, Ed: Boothe DM, WB Sa- unders Company, USA, pp:330-348.
Beutler E. Red Cell Metabolism. A Manual of Biochemical Methods, 3rd Edition, Orlando: Grune & Stratton, 1984.
Chen Y, Jungsuwadee P, Vore M, Butterfield DA, St Clair DK. (2007). Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Int, 7(3): 147.
Chopra S, Pillai KK, Husain SZ, Girl DK. (1995). Propolis protects against doxorubicin-induced myocardiopathy in rats. Exp Mol Path, 62(3): 190-198.
Chularojmontri L, Wattanapitayakul SK, Herunsalee A, Charuchongkolwongse S, Niumsakul S, Srichairat S. (2005). Antioxidative and cardioprotective effects of Phyllanthus urinaria L. on doxorubicin-induced cardiotoxicity. Biol Pharm Bull, 28(7): 1165-1171.
Corna G, Santambrogio P, Minotti G, Cairo G. (2004). Doxorubicin paradoxically protects cardiomyocytes against iron-mediated toxicity: role of reactive oxygen species and ferritin. J Biol Chem, 279(14): 13738-13745.
Danova S, Petrov K, Pavlov P, Petrova P. (2005). Isolation and characterization of Lactobacillus strains involved in koumiss fermentation. Int J Dairy Tech, 58(2): 100-105.
Deman A, Ceyssens B, Pauwels M, Zhang J, Houte KV, Verbeelen D, Van den Branden C. (2001). Altered antioxidant defence in a mouse adriamycin model of glomerulosclerosis. Neph Dialysis Transplant, 16(1): 147-150.
Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol, 7(2): 88-95.
Fadillioǧlu E, Erdoǧan H, Söǧüt S, Kuku I. (2003). Protective effects of erdosteine against doxorubicin‐induced cardiomyopathy in rats. J AppToxicol: An Int J, 23(1): 71-74.
Frankel S, Reitman S, Sonnen AC. (1970). A textbook on laboratory procedure and their interpretation. Ch. 10. Grand-Wohl’s Clinical Laboratory Methods and Diagnosis. London. The CV Mosby Co, 403-404.
Gulmez C, Atakisi O. (2020). Kumiss supplementation reduces oxidative stress and activates sirtuin deacetylases by regulating antioxidant system. Nutr And Cancer, 72(3): 495-503.
Gutteridge JM. (1993). Anthracycline toxicity, iron and oxygen radicals, and chelation therapy. J Lab Clin Med, 122(3): 228-229.
Habig WH, Pabst MJ, Jakoby WB. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem, 249(22): 7130-7139.
Hamed MA, El-Rigal NS, Ali SA. (2013). Effects of black seed oil on resolution of hepato-renal toxicity induced by bromobenzene in rats. Eur Rev Med Pharmacol Sci, 17(5): 569-81.
Harmankaya A, Özcan, A. (2017). Effect of different doses of mistletoe lectin-I on the levels of tumor necrosis factor-α, nitric oxide, total antioxidant and oxidant capacity in rabbits. Van Vet J, 28(1): 41-45.
Hohenhaus AE, Peaston A, Maddison JE, 2002. Cancer che- motherapy, in: Small Animal Clinical Pharmacology, Eds: Maddison JE, Page SW, Church D, WB Saunders, NY, USA, pp:293-326.
Iliskovic N, Hasinoff BB, Malisza KL, Li T, Danelisen I, Singal PK. (1999). Mechanisms of beneficial effects of probucol in adriamycin cardiomyopathy. In Stress Adaptation, Prophylaxis and Treatment (pp. 43-49). Springer, Boston, MA.
Iqbal M, Dubey K, Anwer T, Ashish A, Pillai KK. (2008). Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats. Pharmacol Rep, 60(3): 382.
Kalender Y, Yel M, Kalender S. (2005). Doxorubicin hepatotoxicity and hepatic free radical metabolism in rats: the effects of vitamin E and catechin. Toxicology, 209(1): 39-45.
Kaya E, Yılmaz S. (2019). Çörek Otu Yağının Ratlarda Doksorubisin Kaynaklı Kardiyotoksisite Üzerindeki Etkilerinin Belirlenmesi. Fırat Üni Sağ Bil Vet Derg, 33(1):, 31-36.
Khan M, Shobha JC, Mohan IK, Naidu MUR, Sundaram C, Singh S, ... & Kutala VK. (2005). Protective effect of Spirulina against doxorubicin‐induced cardiotoxicity. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 19(12): 1030-1037.
Kimura T, Fujita I, Itoh N, Muto N, Nakanishi T, Takahashi K, ... & Tanaka K. (2000). Metallothionein acts as a cytoprotectant against doxorubicin toxicity. J Pharmacol Exp Therapeutics, 292(1): 299-302.
Kurmann JA, Rasic JL, Kroger M. (1992). Encyclopedia of fermented fresh milk products: an international inventory of fermented milk, cream, buttermilk, whey, and related products. Springer Science & Business Media.
Li T, Singal PK. (2000). Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation, 102(17): 2105-2110.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem, 193: 265-275.
Luo X, Evrovsky Y, Cole D, Trines J, Benson LN, Lehotay DC. (1997). Doxorubicin-induced acute changes in cytotoxic aldehydes, antioxidant status and cardiac function in the rat. BBA-Mol Basis Dis, 1360(1): 45-52.
Malarkodi KP, Balachandar AV, Varalakshmi P. (2003). Protective effect of lipoic acid on adriamycin induced lipid peroxidation in rat kidney. Mol Cell Biochem, 247(1): 9-13.
Matés JM, Pérez-Gómez C, De Castro IN. (1999). Antioxidant enzymes and human diseases. Clin Biochem, 32(8): 595-603.
Myers C. (1998). The role of iron in doxorubicin-induced cardiomyopathy. In Seminars in Oncol, 25(4): 10-14.
Narin F, Demir F, Akgün H, Baykan A, Koçer D, Üzüm K. (2005). Doksorubisin ile oluşturulmuş deneysel kardiyotoksisite ve kardiyotoksisite üzerine L-triptofan etkisi. Erciyes Tıp Dergisi, 27(1): 7-16.
Placer ZA, Cushman LL, Johnson BC. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem, 16(2): 359-364.
Rajok MSR, Mehwish HM, Zhang H, Ashraf M, Fan H, Zeng X, ... He Z. (2020). Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids and Surfaces B: Biointerfaces, 186: 110734.
Sacco G, Bigioni M, Evangelista S, Goso C, Manzini S, Maggi CA. (2001). Cardioprotective effects of zofenopril, a new angiotensin-converting enzyme inhibitor, on doxorubicin-induced cardiotoxicity in the rat. Euro J Pharmacol, 414(1): 71-78.
Shaker RA, Abboud SH, Assad HC, Hadi N. (2018). Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacol Toxicol, 19(1): 1-10.
Su Z, Ye J, Qin Z, Ding X. (2015). Protective effects of madecassoside against Doxorubicin induced nephrotoxicity in vivo and in vitro. Scientific Rep, 5(1): 1-14.
Sun YI, Oberley LW, Li Y. (1988). A simple method for clinical assay of superoxide dismutase. Clin Chem, 34(3): 497-500.
Tanrıverdi G. (2005) Karbon tetraklorür (CCL4) ile oluflturulmuş karaciğer hasarında değişik dozlardaki nikotinamidin protektif etkisinin ışık ve elektron mikroskobik olarak incelenmesi [Yüksek Lisans Tezi]. İstanbul Ü. Cerrahpaşa Tıp Fakültesi Histoloji ve Embriyoloji A.D.; 2005.
Tegin RAA, Gönülalan, Z. (2014). All Aspects Of Koumiss, The Natural Fermented Product. MANAS J Eng, 2(1): 23-34.
Yagmurca M, Bas O, Mollaoglu H, Sahin O, Nacar A, Karaman O, Songur A. (2007). Protective effects of erdosteine on doxorubicin-induced hepatotoxicity in rats. Arch Med Res, 38(4): 380-385.
Yiğit AA. (2020). Animal and plant-based milk and their antioxidant properties. Vet J Mehmet Akif Ersoy Uni, 4(2): 113-122.
Yilmaz S, Yilmaz E. (2006). Effects of melatonin and vitamin E on oxidative–antioxidative status in rats exposed to irradiation. Toxicology, 222(1-2): 1-7.
Yilmaz S, Atessahin A, Sahna E, Karahan I, Ozer S. (2006). Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity. Toxicology: 218(2-3), 164-171.
Yin X, Wu H, Chen Y, Kang YJ. (1998). Induction of antioxidants by adriamycin in mouse heart. Biochemical pharmacology, 56(1): 87-93.
Zare MFR, Rakhsha K, Aboutaleb N, Nikbakht F, Naderi N, Bakhshesh M, Azizi Y. (2019). Apigenin attenuates doxorubicin induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats. Life Sci, 232: 116623.
Zordoky BN, Anwar-Mohamed A, Aboutabl ME, El-Kadi AO. (2011). Acute doxorubicin toxicity differentially alters cytochrome P450 expression and arachidonic acid metabolism in rat kidney and liver. Drug Met Dis, 39(8): 1440-1450.
Artículos más leídos del mismo autor/a