test Effects of Replacing Alfalfa Hay with Amaranthus caudatus Hay on Digestibility, Methane Emissions, and Microbial Protein Efficiency in Ruminant Diets|Journal of the Hellenic Veterinary Medical Society

Effects of Replacing Alfalfa Hay with Amaranthus caudatus Hay on Digestibility, Methane Emissions, and Microbial Protein Efficiency in Ruminant Diets


ÇÖ Özkan
B Selçuk
T Bakir
Y Bilal
A Kamalak
Résumé

The study aimed to assess the impact of substituting alfalfa hay with Amarant (Amaranthus caudatus) hay in ruminant diets on fermentation parameters. Using in vitro gas production, diets with Amaranth hay at 0%, 10%, 20%, and 30% were formulated, maintaining isocaloric and nitrogenic levels. While methane (CH4) production remained unchanged, notable effects were observed on true digestible dry matter (TDDM), true digestibility (TD), gas and methane production per digested dry matter (DM), and microbial protein. Substituting alfalfa with Amaranth hay favored microbial protein production over gas and methane, suggesting potential replacement up to 30%. This substitution reduced methane production and enhanced microbial protein. Further in vivo experiments are necessary to evaluate its impact on feed intake and overall animal production.

Article Details
  • Rubrique
  • Research Articles
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Alegbejo JO (2013). Nutritional value and utilization of Amaranthus
(Amaranthus spp.)–a review. Bayero Journal
of Pure and Applied Sciences, 6(1), 136-143.
Ampapon T, Viennasay B, Matra M, Totakul P, Wanapat M (2022).
Phytonutrients in red amaranth (Amaranthus
cruentus, L.) and feed ratios enhanced rumen fermentation dynamics,
suppress protozoal population, and methane production. Frontiers
in Animal Science, 3, 741543.
AOAC (1990). Official Method of Analysis, Association of Official
Analytical Chemists, 15thEdition,
Washington, DC. USA.
Araújo DRC, de Carneiro H, Silva AM, de A, da Silva UL, & Bernardi
TM (2012). Avaliação da Degradabilidade in vitro, Ácidos Graxos
Voláteis e Perdas Energéticas através da Produção Total de Gases,
Metano e Dióxido de Carbono de Quatro Espécies Forrageiras em
Bovinos e Ovinos. 14(2), 203–206. https://doi.org/10.15528/2836
Ayasan T, Ulger I, Cil AN, Tufarelli V, Laudadio V, & Palangi V (2021).
Estimation of chemical composition, in vitro gas production, metabolizable
energy, net energy lactation values of different peanut
varieties and line by Hohenheim in vitro gas production technique.
Semina: Ciencias Agrarias, 42(2), 907-920.
Besharati M, Palangi V, Moaddab M, Nemati Z, & Ayaşan T (2021).
Comparative effects of addition of monensin, tannic acid and cinnamon
essential oil on in vitro gas production parameters of sesame
meal. Journal of the Hellenic Veterinary Medical Society, 72(2),
-2988.
Blümmel M, Makkar HPS, Becker K (1997b). In vitro gas production:
a technique revisited. Journal of Animal
Physiology and Animal Nutrition, 77(1‐5), 24-34.
Blümmel M, Steingaβ H, Becker K (1997a) The relationship between in
vitro gas production, in vitro microbial
biomass yield and 15 N incorporation and its implications for the prediction
of voluntary feed intake of roughages. British Journal of
Nutrition, (77)6: 911–921.
Curzaynz-Leyva KR, Escobar-España, JC, Santillán-Gómez EA,
Tapia-Díaz L, Parral-Herrera E, & Bárcena-Gama JR (2018).
Production of gas and methane from agricultural byproducts in
ruminant diets. 11(2), 52–56. https://www.cabdirect.org/cabdirect/
abstract/20193038743
Duncan DB (1955). Multiple range and multiple F tests. Biometrics,
(1): 1–42.
Gallo A, Giuberti G, Frisvad JC, Bertuzzi T, Nielsen KF (2015). Review
on mycotoxin issues in ruminants:
Occurrence in forages, effects of mycotoxin ingestion on heal th status
and animal performance and practical strategies to counteract
their negative effects. Toxins, 7(8), 3057-3111.
Goel G, Makkar HP, Becker K (2008). Effects of Sesbania sesban
and Carduus pycnocephalus leaves and
Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on
partitioning of nutrients from roughage-and concentrate-based feeds
to methane. Animal Feed Science and Technology, 147(1–3): 72–89.
Hariadi BT, Santoso B (2009). Evaluation of tropical plants containing
tannin on in vitro methanogenesis and
fermentation parameters using rumen fluid. J Sci Food Agric 90:
–461.
IPCC. (Intergovernmental Panel on Climate Change) (2001): Climate
change 2001. The scientific basis.
Cambridge University Press, Cambridge, UK.
Kim JH, Woo JS, & Park KK (2024). Methane emissions status and
nutritional strategies for mitigating rumen-produced methane. 축산
기술과 산업 , 11(2), 75–91. https://doi.org/10.5187/ait.2024.11.2.75
Kreuzer M, Hindrichsen IK (2006). Methane mitigation in ruminants
by dietary means: the role of their methane
emission from manure. International Congress Series (Vol. 1293, pp.
-208). Elsevier.
Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W
(1979). The estimation of the digestibility
and metabolizable energy content of ruminant feedingstuffs from the
gas production when they are
incubated with rumen liquor in vitro. The Journal of Agricultural Science,
(1): 217–222.
Metzler‐Zebeli BU, Scherr C, Sallaku E, Drochner W, Zebeli Q (2012).
Evaluation of associative effects of total
mixed ration for dairy cattle using in vitro gas production and different
rumen inocula. Journal of the
Science of Food and Agriculture, 92(12), 2479-2485.
Microsoft Corporation. (2016). Microsoft Excel. Retrieved from https://
office.microsoft.com/excel
Navarro-Villa A, O’brien M, López S, Boland TM, O’kiely P (2011).
Modifications of a gas production technique
for assessing in vitro rumen methane production from feedstuffs. Animal
Feed Science and Technology, 166, 163-174.
Nogoy KMC, Yu J, Song YG, Li S, Chung JW, & Choi SH (2020).
Evaluation of the Nutrient Composition, In Vitro Fermentation
Characteristics, and In Situ Degradability of Amaranthus caudatus,
Amaranthus cruentus, and Amaranthus hypochondriacus in
Cattle. Open Access Journal, 11(1), 18. https://doi.org/10.3390/
ANI11010018
NRC (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats,
Cervids, and New World Camelids
National Academy of Science.
Olatunji EA, & Garba MG (2013). In Sacco and In Vitro Organic Matter
Degradability (OMD) Of Selected Semi Arid Browse Forages. IOSR
Journal of Agriculture and Veterinary Science, 3(2), 9–16. https://
doi.org/10.9790/2380-0320916
Palangi V, Macit M, Nadaroglu H, Taghizadeh A (2024). Effects of
green-synthesized CuO and ZnO
nanoparticles on ruminal mitigation of methane emission to the enhancement
of the cleaner environment. Biomass Conversion and
Biorefinery, 14(4), 5447-5455.
Palangi, V, & Lackner M. (2022). Management of Enteric Methane
Emissions in Ruminants Using Feed Additives: A Review. Animals,
Putri EM, Zain M, Warly L, Negara W, Ibrahim A, & Baihaqi ZA
(2024). Optimizing protein, energy, and protein degradable ratios
to enhance in vitro ruminal fermentation and reduce methane
gas emission. 1377, 012070. https://doi.org/10.1088/1755-
/1377/1/012070
Sakita GZ, Bompadre TFV, Dineshkumar D, Lima P. de MT, Filho ALA,
Campioni TS, Neto P, de O, Neto HB, Louvandini H, & Abdalla AL
(2020). Fibrolytic enzymes improving in vitro rumen degradability
of tropical forages. Journal of Animal Physiology and Animal
Nutrition, 104(5), 1267–1276. https://doi.org/10.1111/JPN.13373
Selcuk B, Bilal Y, Bakir T, Ozkan CO (2024). Effects of replacing of
alfalfa hay with Plantago lanceolata
hay on digestibility, methane production and microbial protein production
of total mixed diet. Tropical
Animal Health and Production, 56(4), 158.
Sembiring M, & Baba AS (2022). In Vitro Gas Production Test: towards
Rapid Nutritional Evaluation of Roughages for Ruminant Feeding.
Formosa Journal of Science and Technology, 1(4), 247–258. https://
doi.org/10.55927/fjst.v1i4.969
Shadi H, Rouzbehan Y, Rezaei J, & Fazaeli H (2020). Yield, chemical
composition, fermentation characteristics, in vitro ruminal variables,
and degradability of ensiled amaranth (Amaranthus hypochondriacus)
cultivars compared with corn (Zea mays) silage. 4(4).
SPSS (2011). IBM SPSS statistics for Windows, version 20.0. New
York: IBM Corp 440.
Thirumalesh T, Krishnamoorthy U (2013). Rumen microbial biomass
synthesis and its importance in
ruminant production. Int. J. Livest. Res, 3(2), 5-26.
Van Soest PJ, Robertson JB, Lewis BA (1991). Methods for dietary
fiber, neutral detergent fiber and non-starch
polysaccharides in relation to animal nutrition. Journal of Dairy Science
, 3583–3597.
Vercoe PE, Makkar HP, Schlink AC (2010). In vitro screening of plant
resources for extra-nutritional attributes in
ruminants: nuclear and related methodologies (p. 247). Heidelberg:
Springer.
Yanez-Ruiz DR, Bannink A, Dijkstra J, Kebreab E, Morgavi DP, O’Kiely,
P Hristov AN (2016).Design,
implementation and interpretation of in vitro batch culture experiments
to assess enteric methane
mitigation in ruminants—a review. Animal Feed Science and Technology,
, 1–18.
Zicarelli F, Calabro S, Cutrignelli MI, Infascelli F, Tudisc R, Bovera F,
Piccolo V (2011). In vitro fermentation
characteristics of diets with different forage/concentrate ratios: comparison
of rumen and
faecal inocula. Journal of the Science of Food and Agriculture, 91(7),
-1221.