Prevalence and biofilm-formation ability of Staphylococcus aureus isolated from livestock, carcasses, the environment, and workers of three abattoirs in Greece


Dimitrios Komodromos
https://orcid.org/0000-0002-4751-977X
Charalambos Kotzamanidis
https://orcid.org/0000-0002-8804-239X
Virginia Giantzi
https://orcid.org/0000-0001-6738-2785
Apostolos S. Angelidis
https://orcid.org/0000-0003-1027-2539
Antonios Zdragas
https://orcid.org/0000-0001-9007-8511
Daniel Sergelidis
https://orcid.org/0000-0002-3389-5328
Abstract

Staphylococcus aureus is one of the leading causes of foodborne intoxications. The pathogen’s biofilm-formation ability facilitates its spread and enhances its tolerance against hostile environments. The objectives of this cross-sectional study were to investigate the prevalence of S. aureus in the received livestock, the corresponding carcasses, the employees and the surfaces of infrastructures and tools in three abattoirs of Northern Greece and to determine the biofilm-forming potential of the recovered isolates. The isolation of presumptive S. aureus isolates from different types of samples was performed using classic microbiological methods and molecular identification to the species level was done via detection of the coa and nuc genes. Biofilm-formation ability was assessed using a semi-quantitative, microtiter plate method. Fifty-five out of 547 samples examined tested positive for the presence of S. aureus. The highest S. aureus isolation frequency was observed from human nasal cavities (17.2%) and tool surfaces (16.1%) followed by pig carcasses (15.5%), small ruminant nasal cavities (15.0%), cattle nasal cavities (7.5%), pig nasal cavities (6.9%), infrastructure surfaces (6.8%), cattle carcasses (5.7%) and small ruminant carcasses (5.0%). The isolation frequency of S. aureus varied considerably (p < 0.05) among the sampled establishments, ranging from 4.2% to 31.7%. All S. aureus isolates were found capable of producing biofilms: 43.6% possessed strong biofilm-formation ability, 54.5% moderate and only one isolate (1.8%) showed weak biofilm-formation ability. The contamination of equipment and tools by biofilm-producing S. aureus emphasizes the need for the application of strict hygiene practices during meat-processing. In addition, the application of an effective and regularly verified sanitation program is necessary to prevent biofilm formation and minimize the risk of carcass contamination.

Article Details
  • Sezione
  • Research Articles
Downloads
I dati di download non sono ancora disponibili.
Riferimenti bibliografici
Alzohairy MA (2011) Colonization and antibiotic susceptibility pattern of methicillin resistance Staphylococcus aureus (MRSA) among farm animals in Saudi Arabia. J Bacteriol Res 3: 63–68.
Angelidis AS, Komodromos D, Giannakou R, Arsenos G, Gelasakis AI, Kyritsi M, Filioussis G, Hadjichristodoulou C, Torounidou P, Papa A, Sergelidis D (2020) Isolation and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) from milk of dairy goats under low-input farm management in Greece. Vet Microbiol 247: 108749.
Beyene T, Hayishe H, Gizaw F, Beyi AF, Abunna F, Mammo B, Ayana D, Waktole H, Abdi RD (2017) Prevalence and antimicrobial resistance profile of Staphylococcus in dairy farms, abattoir and humans in Addis Ababa, Ethiopia. BMC Res Notes 10: 1–9.
Borges S, Silva J, Teixeira P (2012) Survival and biofilm formation by Group B streptococci in simulated vaginal fluid at different pHs. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 101: 677–682.
Brusa V, Restovich V, Signorini M, Pugin D, Galli L, Díaz VR, Arias R, Leotta GA (2019) Evaluation of intervention measures at different stages of the production chain in Argentinian exporting abattoirs. Food Sci Technol Int 25: 491–496.
Costa M, Pracca G, Sucari A, Galli L, Ibargoyen J, Gentiluomo J, Brusa V, Martinez Zugazua M, Figueroa Y, Londero A, Roge A, Silva H, Van Der Ploeg C, Signorini M, Oteiza JM, Leotta GA (2020) Comprehensive evaluation and implementation of improvement actions in bovine abattoirs to reduce pathogens exposure. Prev Vet Med 176: 104933.
Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: A common cause of persistent infections. Science 5418: 1318-1322.
Cuny C, Köck R, Witte W (2013) Livestock associated MRSA (LA-MRSA) and its relevance for humans in Germany. Int J Med Microbiol 303: 331–337.
Di Ciccio P, Vergara A, Festino AR, Paludi D, Zanardi E, Ghidini S, Ianieri A (2015) Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control 50: 930–936.
Doulgeraki AI, Di Ciccio P, Ianieri A, Nychas GJE (2017) Methicillin-resistant food-related Staphylococcus aureus: a review of current knowledge and biofilm formation for future studies and applications. Res Microbiol 168: 1–15.
Drougka E, Foka A, Giormezis N, Sergelidis D, Militsopoulou M, Jelastopulu E, Komodromos D, Sarrou S, Anastassiou ED, Petinaki E, Spiliopoulou I (2019) Multidrug-resistant enterotoxigenic Staphylococcus aureus lineages isolated from animals, their carcasses, the personnel, and the environment of an abattoir in Greece. J Food Process Preserv 43: 1–10.
Eriksson J, Espinosa-Gongora C, Stamphøj I, Larsen AR, Guardabassi L (2013) Carriage frequency, diversity and methicillin resistance of Staphylococcus aureus in Danish small ruminants. Vet Microbiol 163: 110–115.
Fox A, Pichon B, Wilkinson H, Doumith M, Hill RLR, McLauchlin J, Kearns AM (2017) Detection and molecular characterization of Livestock-Associated MRSA in raw meat on retail sale in North West England. Lett Appl Microbiol 64: 239–245.
Furuya EY, Cook HA, Lee MH, Miller M, Larson E, Hyman S, Della-Latta P, Mendonca EA, Lowy FD (2007) Community-associated methicillin-resistant Staphylococcus aureus prevalence: How common is it? A methodological comparison of prevalence ascertainment. Am J Infect Control 35: 359–366.
Gharsa H, Ben Slama K, Lozano C, Gómez-Sanz E, Klibi N, Ben Sallem R, Gómez P, Zarazaga M, Boudabous A, Torres C (2012) Prevalence, antibiotic resistance, virulence traits and genetic lineages of Staphylococcus aureus in healthy sheep in Tunisia. Vet Microbiol 156: 367–373.
Gharsa H, Slama K Ben, Gómez-Sanz E, Lozano C, Zarazaga M, Messadi L, Boudabous A, Torres C (2015) Molecular characterization of Staphylococcus aureus from nasal samples of healthy farm animals and pets in Tunisia. Vector-Borne Zoonotic Dis 15: 109–115.
Gibson H, Taylor JH, Hall KE, Holah JT (1999) Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. J Appl Microbiol 87: 41–48.
Hookey J V., Richardson JF, Cookson BD (1998) Molecular typing of Staphylococcus aureus based on PCR restriction fragment length polymorphism and DNA sequence analysis of the coagulase gene. J Clin Microbiol 36: 1083–1089.
Joint Ministerial Council Decision 2014/1221-50912 concerning the calculation of production capacity of the ungulates’ slaughterhouses (2014). http://www.et.gr/idocs-nph/search/pdfViewerForm.html?args=5C7QrtC22wEc63YDhn5AeXdtvSoClrL8fnjEuKFUxZjNZ8op6Z_wSuJInJ48_97uHrMts-zFzeyCiBSQOpYnTy36MacmUFCx2ppFvBej56Mmc8Qdb8ZfRJqZnsIAdk8Lv_e6czmhEembNmZCMxLMtQQE9Xr5UrKWle8AtM9La-vmJjo4Ag9Bv8PEYunFZYV6 [accessed on 10.03.2021]
Joint Ministerial Council Decision 2014/1545-70158 concerning the procedures’ setting for sampling and laboratory analysis of products of animal origin, during the official inspection at the slaughterhouses of ungulates animals and poultry (2014). http://www.et.gr/idocs-nph/search/pdfViewerForm.html?args=5C7QrtC22wEc63YDhn5AeXdtvSoClrL8VngElbqsA6B_zJjLAILKFuJInJ48_97uHrMts-zFzeyCiBSQOpYnTy36MacmUFCx2ppFvBej56Mmc8Qdb8ZfRJqZnsIAdk8Lv_e6czmhEembNmZCMxLMtfqqRsjsYEHdLq6cidKqV3V9ShVYXxcL2NQ85KIoRyG1 [accessed on 10.03.2021]
Klimešová M, Manga I, Nejeschlebová L, Horáček J, Ponížil A, Vondrušková E (2017) Occurrence of Staphylococcus aureus in cattle, sheep, goat, and pig rearing in the Czech Republic. Acta Vet Brno 86: 3–10.
Kluytmans J, Van Belkum A, Verbrugh H (1997) Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10: 505–520.
Le Loir Y, Baron F., Gautier M (2003) Staphylococcus aureus and food poisoning. Genetics and Molecular Research. Genet Mol Res 2: 63–76.
Lianou A, Nychas GJE, Koutsoumanis KP (2020) Strain variability in biofilm formation: A food safety and quality perspective. Food Res Int 137: 109424.
Lister JL, Horswill AR (2014) Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Front Cell Infect Microbiol 4: 1–9.
Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22: 582–610.
Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339: 520–532.
Lowy FD (2003) Antimicrobial resistance: The example of Staphylococcus aureus. J Clin Invest 111: 1265–1273.
Mama OM, Gómez-Sanz E, Ruiz-Ripa L, Gómez P, Torres C (2019) Diversity of staphylococcal species in food producing animals in Spain, with detection of PVL-positive MRSA ST8 (USA300). Vet Microbiol 233: 5–10.
Mechesso AF, Moon DC, Ryoo GS, Song HJ, Chung HY, Kim SU, Choi JH, Kim SJ, Kang HY, Na SH, Yoon, Soon S, Lim SK (2021) Resistance profiling and molecular characterization of Staphylococcus aureus isolated from goats in Korea. Int J Food Microbiol 336: 108901.
Miao J, Liang Y, Chen L, Wang W, Wang J, Li B, Li L, Chen D, Xu Z (2017) Formation and development of Staphylococcus biofilm: With focus on food safety. J Food Saf 37: 1–11.
O’Brien AM, Hanson BM, Farina SA, Wu JY, Simmering JE, Wardyn SE, Forshey BM, Kulick ME, Wallinga DB, Smith TC (2012) MRSA in conventional and alternative retail pork products. PLoS One 7: 3–8.
O’Sullivan T, Friendship R, Blackwell T, Pearl D, McEwen B, Carman S, Slavićc D, Dewey C (2011) Microbiological identification and analysis of swine tonsils collected from carcasses at slaughter. Can J Vet Res 75: 106–111.
Odetokun IA, Ballhausen B, Adetunji VO, Ghali-Mohammed I, Adelowo MT, Adetunji SA, Fetsch A (2018) Staphylococcus aureus in two municipal abattoirs in Nigeria: Risk perception, spread and public health implications. Vet Microbiol 216: 52–59.
Okorie-Kanu OJ, Anyanwu MU, Ezenduka E V., Mgbeahuruike AC, Thapaliya D, Gerbig G, Ugwuijem EE, Okorie-Kanu CO, Agbowo P, Olorunleke S, Nwanta JA, Chah KF, Smith TC (2020) Molecular epidemiology, genetic diversity and antimicrobial resistance of Staphylococcus aureus isolated from chicken and pig carcasses, and carcass handlers. PLoS One 15: 1–18.
Otto M (2018) Staphylococcal biofilms. Microbiol Spectr 6: 3–23.
Papadopoulos P, Papadopoulos T, Angelidis AS, Kotzamanidis C, Zdragas A, Papa A, Filioussis G, Sergelidis D (2019) Prevalence, antimicrobial susceptibility and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus isolated from dairy industries in north-central and north-eastern Greece. Int J Food Microbiol 291: 35–41.
Peton V, Le Loir Y (2014) Staphylococcus aureus in veterinary medicine. Infect Genet Evol 21: 602–615.
Pexara A, Solomakos N, Govaris A (2020) Occurrence, antibiotic resistance and enteroxigenicity of Staphylococcus spp. in tonsils of slaughtered pigs in Greece. Lett Appl Microbiol 71: 394–399.
Savage VJ, Chopra I, O’Neill AJ (2013) Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother 57: 1968–1970.
Sergelidis D, Papadopoulos T, Komodromos D, Sergelidou E, Lazou T, Papagianni M, Zdragas A, Papa A (2015) Isolation of methicillin-resistant Staphylococcus aureus from small ruminants and their meat at slaughter and retail level in Greece. Lett Appl Microbiol 61: 498–503.
Singh R, Ray P, Das A, Sharma M (2010) Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 65: 1955–1958.
Sollid JUE, Furberg AS, Hanssen AM, Johannessen M (2014) Staphylococcus aureus: Determinants of human carriage. Infect Gen Evol 21: 531-541.
Sudagidan M, Aydin A (2009) Screening virulence properties of staphylococci isolated from meat and meat products. Wien Tierarztl Monatsschr 96: 128–134.
Tefera M, Aleme H, Girma S, Ali A, Gugsa G, Abera F, Muzeyin R, Legesse T, Gobena W, Fentaw S, Abubaker R, Tadesse A, Gonfa A (2019) Antimicrobial susceptibility pattern of S. aureus isolated from sheep and goat carcasses. Open Microbiol J 13: 16–20.
Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28: 603–661.
Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P (2010) Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol Infect 138: 606–625.
Vázquez-Sánchez D, Habimana O, Holck A (2013) Impact of food-related environmental factors on the adherence and biofilm formation of natural Staphylococcus aureus isolates. Curr Microbiol. 66:110-121.
Wang L, Yu F, Yang L, Li Q, Zhang X, Zeng Y (2010) Prevalence of virulence genes and biofilm formation among Staphylococcus aureus clinical isolates associated with lower respiratory infection. African J Microbiol Res 4: 2566–2569.
Zdragas A, Papadopoulos T, Mitsopoulos I, Samouris G, Vafeas G, Boukouvala E, Ekateriniadou L, Mazaraki K, Alexopoulos A, Lagka V (2015) Prevalence, genetic diversity, and antimicrobial susceptibility profiles of Staphylococcus aureus isolated from bulk tank milk from Greek traditional ovine farms. Small Rumin Res 125: 120–126.