Effects of rumen protected choline and methionine on in vitr o gas production kinetics and the characteristics of rumen fermentation


Опубликован: Juli 5, 2025
A Fekri
M Ganjkhanlou
M Ramin
A Zali
M Dehghan-Banadaky
M Sadeghi
Аннотация

This study aimed to examine the effects of varying concentrations of rumen-protected methionine (RPM) and rumen-protected choline chloride (RPC), with respect to their chemical composition, on in vitro accumulated biogas (BG), biogas kinetics, and in vitro rumen fermentation profile. This investigation was carried out at different incubation time intervals utilizing an in vitro gas production approach. The experimental design was a 2´2 factorial arrangement in a completely randomized design (CRD) with four replications per treatment. Total gas production volume and fermentation process were measured at 2, 4, 6, 8, 12, 24, 36, 48, 72, and 96 hours of incubation. The addition of experimental RPC, RPM, or their mixture did not significantly alter the volume of in vitro asymptotic GP during the various incubation times compared to the control group in terms of b (mL/g DM; P = 0.15), c (fraction per h; P = 0.14), L (fraction per h; P = 0.21), or both (P > 0.05). For all evaluated parameters of the in vitro rumen fermentation profile, including pH, DMD, OMD, and SCFA, no interactions were seen compared to the controls (P > 0.05). Overall, the findings showed that the values of the experimental groups for rumen fermentation, gas production kinetics, and in vitro accumulative gas production were identical. Additional researches are required to test the correctness and precision of the current data offered in the paper through using up to update technology.


 

Article Details
  • Раздел
  • Research Articles
Скачивания
Данные скачивания пока недоступны.
Библиографические ссылки
Abbasi, I. H. R., Abbasi, F., Abd El-Hack, M. E., Abdel-Latif, M.
A., Soomro, R. N., Hayat, K., Mohamed, M. A., Bodinga, B.
M., Yao, J., & Cao, Y. (2018). Critical analysis of excessive
utilization of crude protein in ruminants ration: impact on
environmental ecosystem and opportunities of supplementation
of limiting amino acids—a review. Environmental
Science and Pollution Research, 25, 181-190.
Abbott, D. W., Aasen, I. M., Beauchemin, K. A., Grondahl, F.,
Gruninger, R., Hayes, M., Huws, S., Kenny, D. A., Krizsan,
S. J., & Kirwan, S. F. (2020). Seaweed and seaweed bioactives
for mitigation of enteric methane: challenges and
opportunities. Animals, 10(12), 2432.
Ahmed, M., Salem, A., Olafadehan, O., Kholif, A., Rivero, N.,
Mariezcurrena, M., Camacho, L., Elghandour, M., Alonso,
M., & Almaz, A. (2016). Effect of pre-and post-partum dietary
crude protein level on the performance of ewes and
their lambs. Small Ruminant Research, 136, 221-226.
Atkins, K., Erdman, R., & Vandersall, J. (1988). Dietary choline
effects on milk yield and duodenal choline flow in dairy
cattle. Journal of Dairy Science, 71(1), 109-116.
Bannink, A., Kogut, J., Dijkstra, J., France, J., Kebreab, E.,
Van Vuuren, A., & Tamminga, S. (2006). Estimation of the
stoichiometry of volatile fatty acid production in the rumen
of lactating cows. Journal of Theoretical Biology, 238(1),
-51.
Blümmel, M., Steingaβ, H., & Becker, K. (1997). The relationship
between in vitro gas production, in vitro microbial
biomass yield and 15N incorporation and its implications
for the prediction of voluntary feed intake of roughages.
British Journal of Nutrition, 77(6), 911-921.
Burt, S. (2004). Essential oils: their antibacterial properties and
potential applications in foods—a review. International
Journal of Food Microbiology, 94(3), 223-253.
Calsamiglia, S., Cardozo, P., Ferret, A., & Bach, A. (2008).
Changes in rumen microbial fermentation are due to a
combined effect of type of diet and pH. Journal of Animal
Science, 86(3), 702-711.
Canbolat, Ö., Kara, H., & Fİlya, İ. (2013). Comparison of in
vitro gas production, metabolizable energy, organic matter
digestibility and microbial protein production of some
legume hays.
Chen, L., Yuan, X., Li, J., Dong, Z., Wang, S., Guo, G., &
Shao, T. (2019). Effects of applying lactic acid bacteria and
propionic acid on fermentation quality, aerobic stability and
in vitro gas production of forage-based total mixed ration
silage in Tibet. Animal Production Science, 59(2), 376-383.
Cherdthong, A., Wanapat, M., Kongmun, P., Pilajun, R., & Khejornsart,
P. (2010). Rumen fermentation, microbial protein
synthesis and cellulolytic bacterial population of swamp
buffaloes as affected by roughage to concentrate ratio. J.
Anim. Vet. Adv, 9(11), 1667-1675.
Cone, J. W., & van Gelder, A. H. (1999). Influence of protein
fermentation on gas production profiles. Animal Feed Science
and Technology, 76(3-4), 251-264.
Contreras‐Govea, F., Marsalis, M., Angadi, S., Smith, G., Lauriault,
L., & VanLeeuwen, D. (2011). Fermentability and
nutritive value of corn and forage sorghum silage when in
mixture with lablab bean. Crop Science, 51(3), 1307-1313.
Desta, S. T., Yuan, X., Li, J., & Shao, T. (2016). Ensiling characteristics,
structural and nonstructural carbohydrate composition
and enzymatic digestibility of Napier grass ensiled
with additives. Bioresource Technology, 221, 447-454.
Feldsine, P., Abeyta, C., & Andrews, W. H. (2002). AOAC International
methods committee guidelines for validation of
qualitative and quantitative food microbiological official
methods of analysis. Journal of AOAC international, 85(5),
-1200.
France, J., Dijkstra, J., Dhanoa, M., Lopez, S., & Bannink, A.
(2000). Estimating the extent of degradation of ruminant
feeds from a description of their gas production profiles observed
in vitro: derivation of models and other mathematical
considerations. British Journal of Nutrition, 83(2), 143-150.
Gajera, A., Dutta, K., Savsani, H., Parsana, D., Vataliya, P.,
Sipai, S., & Ribadiya, N. (2013). Effect of rumen protected
Lysine, Methionine and fat on nutrients utilization in growing
Jaffrabadi heifers. Indian Journal of Animal Nutrition,
(4), 351-357.
Getachew, G., Blümmel, M., Makkar, H., & Becker, K. (1998).
In vitro gas measuring techniques for assessment of nutritional
quality of feeds: a review. Animal Feed Science and
Technology, 72(3-4), 261-281.
Getachew, G., Makkar, H., & Becker, K. (2002). Tropical browses:
contents of phenolic compounds, in vitro gas production
and stoichiometric relationship between short chain fatty
acid and in vitro gas production. The Journal of Agricultural
Science, 139(3), 341-352.
Guyader, J., Doreau, M., Morgavi, D., Gérard, C., Loncke, C.,
& Martin, C. (2016). Long-term effect of linseed plus nitrate
fed to dairy cows on enteric methane emission and nitrate
and nitrite residuals in milk. Animal, 10(7), 1173-1181.
Hart, K., Yáñez-Ruiz, D. R., Duval, S., McEwan, N., & Newbold,
C. (2008). Plant extracts to manipulate rumen fermentation.
Animal Feed Science and Technology, 147(1-3), 8-35.
John, A., & Ulyatt, M. (1979). Phosphatidyl choline as a marker
of duodenal flow of rumen protozoa in sheep.
Kamalak, A., Canbolat, Ö., Gürbüz, Y., & OZAY, O. (2005).
Prediction of dry matter intake and dry matter digestibilities
of some forages using the gas production technique in
sheep. Turkish Journal of Veterinary & Animal Sciences,
(2), 517-523.
Karabulut, A., Canbolat, O., Kalkan, H., Gurbuzol, F., Sucu, E.,
& Filya, I. (2007). Comparison of in vitro gas production,
metabolizable energy, organic matter digestibility and microbial
protein production of some legume hays. Asian-Australasian
Journal of Animal Sciences, 20(4), 517-522.
Kh, M. (1988). Estimation of the energetic feed value obtained
from chemical analysis and in vitro gas production using
rumen fluid. Anim Res Dev, 28, 7-55.
Kholif, A., Morsy, T., Matloup, O., Anele, U., Mohamed, A., &
El-Sayed, A. (2017). Dietary Chlorella vulgaris microalgae
improves feed utilization, milk production and concentrations
of conjugated linoleic acids in the milk of Damascus
goats. The Journal of Agricultural Science, 155(3), 508-518.
Klopfenstein, T. J., Mass, R., Creighton, K., & Patterson, H.
(2001). Estimating forage protein degradation in the rumen.
Journal of Animal Science, 79(suppl_E), E208-E216.
Lum, K. K., Kim, J., & Lei, X. G. (2013). Dual potential of
microalgae as a sustainable biofuel feedstock and animal
feed. Journal of Animal Science and Biotechnology, 4, 1-7.
Mahala, A. G., & Elseed, A. (2007). Chemical composition
and in vitro gas production characteristics of six fodder
trees leaves and seeds. Research Journal of Agriculture and
Biological Sciences, 3(6), 983-986.
Makkar, H. P. (2010). In vitro screening of feed resources for
efficiency of microbial protein synthesis. In vitro screening
of plant resources for extra-nutritional attributes in ruminants:
nuclear and related methodologies, 107-144.
Marshall, C., Beck, M., Garrett, K., Barrell, G., Al-Marashdeh,
O., & Gregorini, P. (2020). Grazing dairy cows with low
milk urea nitrogen breeding values excrete less urinary urea
nitrogen. Science of the Total Environment, 739, 139994.
Mertens, D. (1997). Creating a system for meeting the fiber
requirements of dairy cows. Journal of Dairy Science, 80(7),
-1481.
Moorby, J. M., Dewhurst, R. J., Evans, R. T., & Danelon, J.
(2006). Effects of dairy cow diet forage proportion on duodenal
nutrient supply and urinary purine derivative excretion.
Journal of Dairy Science, 89(9), 3552-3562.
Mulligan, F., Quirke, J., Rath, M., Caffrey, P., & O’Mara, F.
(2002). Intake, digestibility, milk production and kinetics
of digestion and passage for diets based on maize or grass
silage fed to late lactation dairy cows. Livestock Production
Science, 74(2), 113-124.
Neill, A. R., Grime, D. W., & Dawson, R. (1978). Conversion of
choline methyl groups through trimethylamine into methane
in the rumen. Biochemical Journal, 170(3), 529-535.
Newbold, C., McIntosh, F., Williams, P., Losa, R., & Wallace,
R. (2004). Effects of a specific blend of essential oil compounds
on rumen fermentation. Animal Feed Science and
Technology, 114(1-4), 105-112.
Noftsger, S., St-Pierre, N., & Sylvester, J. (2005). Determination
of rumen degradability and ruminal effects of three sources
of methionine in lactating cows. Journal of Dairy Science,
(1), 223-237.
Pandey, D., Mansouryar, M., Novoa-Garrido, M., Næss, G.,
Kiron, V., Hansen, H., Nielsen, M. O., & Khanal, P. (2021).
Nutritional and anti-methanogenic potentials of macroalgae
for ruminants.
Pinotti, L., Baldi, A., & Dell’Orto, V. (2002). Comparative mammalian
choline metabolism with emphasis on the high-yielding
dairy cow. Nutrition Research Reviews, 15(2), 315-332.
Raab, L., Cafantaris, B., Jilg, T., & Menke, K. (1983). Rumen
protein degradation and biosynthesis: 1. A new method for
determination of protein degradation in rumen fluid in vitro.
British Journal of Nutrition, 50(3), 569-582.
Rauw, W. M., Gómez Izquierdo, E., Torres, O., García Gil, M.,
de Miguel Beascoechea, E., Rey Benayas, J. M., & Gomez-
Raya, L. (2023). Future farming: protein production for
livestock feed in the EU. Sustainable Earth Reviews, 6(1), 3.
Rhoads, M., Rhoads, R., Gilbert, R., Toole, R., & Butler, W.
(2006). Detrimental effects of high plasma urea nitrogen
levels on viability of embryos from lactating dairy cows.
Animal Reproduction Science, 91(1-2), 1-10.
Rodriguez, M. P., Mariezcurrena, M. D., Mariezcurrena, M. A.,
Lagunas, B. C., Elghandour, M. M., Kholif, A. M., Kholif,
A. E., Almaráz, E. M., & Salem, A. Z. (2015). Influence of
live cells or cells extract of Saccharomyces cerevisiae on in
vitro gas production of a total mixed ration. Italian Journal
of Animal Science, 14(4), 3713.
Sharma, B., & Erdman, R. (1989). In Vitro Degradation of
choline from selected foodstuffs and choline supplements.
Journal of Dairy Science, 72(10), 2772-2776.
Sinclair, K., Garnsworthy, P., Mann, G., & Sinclair, L. (2014).
Reducing dietary protein in dairy cow diets: Implications for
nitrogen utilization, milk production, welfare and fertility.
Animal, 8(2), 262-274.
Sniffen, C. J., O’connor, J., Van Soest, P. J., Fox, D. G., &
Russell, J. (1992). A net carbohydrate and protein system
for evaluating cattle diets: II. Carbohydrate and protein
availability. Journal of Animal Science, 70(11), 3562-3577.
Sofyan, A., Irawan, A., Herdian, H., Harahap, M. A., Sakti, A.
A., Suryani, A. E., Novianty, H., Kurniawan, T., Darma, I.
N. G., & Windarsih, A. (2022). Effects of various macroalgae
species on methane production, rumen fermentation, and
ruminant production: a meta-analysis from in vitro and in
vivo experiments. Animal Feed Science and Technology,
, 115503.
Steel, R. G. D., & Torrie, J. H. (1960). Principles and procedures
of statistics.
Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan,
A. B., & France, J. (1994). A simple gas production method
using a pressure transducer to determine the fermentation
kinetics of ruminant feeds. Animal Feed Science and Technology,
(3-4), 185-197.
Tylutki, T., Fox, D., Durbal, V., Tedeschi, L., Russell, J., Van
Amburgh, M., Overton, T., Chase, L., & Pell, A. (2008).
Cornell Net Carbohydrate and Protein System: A model for
precision feeding of dairy cattle. Animal Feed Science and
Technology, 143(1-4), 174-202.
Valdes, K., Salem, A., López, S., Alonso, M., Rivero, N., Elghandour,
M., Domínguez, I., Ronquillo, M., & Kholif, A.
(2015). Influence of exogenous enzymes in presence of
Salix babylonica extract on digestibility, microbial protein
synthesis and performance of lambs fed maize silage. The
Journal of Agricultural Science, 153(4), 732-742.
Van Soest, P. v., Robertson, J. B., & Lewis, B. A. (1991). Methods
for dietary fiber, neutral detergent fiber, and nonstarch
polysaccharides in relation to animal nutrition. Journal of
Dairy Science, 74(10), 3583-3597.
Van Zijderveld, S., Gerrits, W., Apajalahti, J., Newbold, J.,
Dijkstra, J., Leng, R., & Perdok, H. (2010). Nitrate and
sulfate: Effective alternative hydrogen sinks for mitigation
of ruminal methane production in sheep. Journal of Dairy
Science, 93(12), 5856-5866.
Vasconcelos, J. T., Greene, L., Cole, N., Brown, M., McCollum
III, F., & Tedeschi, L. (2006). Effects of phase feeding of
protein on performance, blood urea nitrogen concentration,
manure nitrogen: phosphorus ratio, and carcass characteristics
of feedlot cattle. Journal of Animal Science, 84(11),3032-3038
Wachenheim, D., Blythe, L., & Craig, A. (1992). Characterization
of rumen bacterial pyrrolizidine alkaloid biotransformation
in ruminants of various species. Veterinary and
Human Toxicology, 34(6), 513-517.
Zhao, Y., & Zhao, G. (2022). Decreasing ruminal methane production
through enhancing the sulfate reduction pathway.
Animal Nutrition, 9, 320-326.
Наиболее читаемые статьи этого автора (авторов)