Μηχανική Μάθηση: Ο ρόλος του κειμένου στην πρόβλεψη της επίδοσης διαμέσου βιντεοδιαλέξεων


Δημοσιευμένα: Jan 1, 2023
Λέξεις-κλειδιά:
Επεξεργασία φυσικής γλώσσας αναλυτική της μάθησης μηχανική μάθηση κειμενικά χαρακτηριστικά ταξινόμηση επίδοση βιντεοδιαλέξεις
Βασιλική Ραγάζου
Χαράλαμπος Παπαδήμας
Ηλίας Καρασαββίδης
Περίληψη

Η παρούσα εργασία εξετάζει τη χρήση της Επεξεργασίας Φυσικής Γλώσσας με στόχο την πρόβλεψη της επίδοσης των φοιτητών σε περιβάλλοντα ηλεκτρονικής μάθησης. Παρόλο που η πρόοδος στον τομέα αυτόν είναι ενθαρρυντική, λείπουν μέχρι σήμερα συστηματικές ερευνητικές προσπάθειες να διερευνηθεί πλήρως το δυναμικό της Επεξεργασίας Φυσικής Γλώσσας για την ανάλυση και πρόβλεψη της επίδοσης. Στην έρευνα αυτή συμμετείχαν 85 φοιτητές, οι οποίοι παρακολούθησαν 6 βιντεοδιαλέξεις, για κάθε μία εκ των οποίων κλήθηκαν να συντάξουν μια μικρή περίληψη. Από την επεξεργασία των περιλήψεων προέκυψαν δύο σύνολα μεταβλητών (πρωτογενούς και επεξεργασμένου κειμένου) που τροφοδότησαν οκτώ αλγόριθμους μηχανικής μάθησης. Στις περισσότερες βιντεοδιαλέξεις παρατηρήθηκε μια μικρή διαφοροποίηση τιμών των μέτρων ακρίβειας ταξινόμησης και F1 ενώ η λογιστική παλινδρόμηση (LR) ήταν ο αλγόριθμος που επέφερε τα υψηλότερα επίπεδα ακρίβειας ταξινόμησης τόσο για το πρωτογενές όσο και για το επεξεργασμένο κείμενο. Τα αποτελέσματα της ανάλυσης αναδεικνύουν ότι οι περιλήψεις που δημιουργήθηκαν από τους φοιτητές μπορούν να αποτελέσουν ένα υποσχόμενο σύνολο χαρακτηριστικών για την πρόβλεψη της επίδοσης μέσω βιντεοδιαλέξεων.

Λεπτομέρειες άρθρου
  • Ενότητα
  • Articles
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Αναφορές
Agrawal, A., Venkatraman, J., Leonard, S., & Paepcke, A. (2015). YouEDU: Addressing Confusion in MOOC Discussion Forums by Recommending Instructional Video Clips. International Educational Data Mining Society.
Akçapınar, G., Altun, A., & Aşkar, P. (2019). Using learning analytics to develop early-warning system for at-risk students. International Journal of Educational Technology in Higher Education, 16(1), 40.
Almatrafi, O., Johri, A., & Rangwala, H. (2018). Needle in a haystack: Identifying learner posts that require urgent response in MOOC discussion forums. Computers & Education, 118, 1–9.
Andre, M., Mello, R. F., Nascimento, A., Lins, R. D., & Gasevic, D. (2021). Toward Automatic Classification of Online Discussion Messages for Social Presence. IEEE Transactions on Learning Technologies, 14(6), 802–816.
Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (pp. 267–270).
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students’ performance using educational data mining. Computers & Education, 113, 177–194.
Atapattu, T., & Falkner, K. (2018). Impact of Lecturer’s Discourse for Students’ Video Engagement: Video Learning Analytics Case Study of MOOCs. Journal of Learning Analytics, 5(3), 182-197.
Atapattu, T., Falkner, K., Thilakaratne, M., Sivaneasharajah, L., & Jayashanka, R. (2019). An Identification of Learners’ Confusion through Language and Discourse Analysis. ArXiv. https://arxiv.org/pdf/1903.03286.
Baker, R. S., Gašević, D., & Karumbaiah, S. (2021). Four paradigms in learning analytics: Why paradigm convergence matters. Computers & Education: Artificial Intelligence, 2, 100021.
Bangert-Drowns, R. L., Hurley, M. M., & Wilkinson, B. (2004). The Effects of School-Based Writing-to-Learn Interventions on Academic Achievement: A Meta-Analysis. Review of Educational Research, 74(1), 29–58.
Banihashem, S. K., Noroozi, O., van Ginkel, S., Macfadyen, L. P., & Biemans, H. J. A. (2022). A systematic review of the role of learning analytics in enhancing feedback practices in higher education. Educational Research Review, 37, 100489.
Bodily, R., & Verbert, K. (2017). Trends and issues in student-facing learning analytics reporting systems research. Proceedings of the Seventh International Learning Analytics & Knowledge Conference (pp. 309–318).
Caspari-Sadeghi, S. (2023). Learning assessment in the age of big data: Learning analytics in higher education. Cogent Education, 10(1).
Chen, C.-M., Wang, J.-Y., & Hsu, L.-C. (2021). An interactive test dashboard with diagnosis and feedback mechanisms to facilitate learning performance. Computers and Education: Artificial Intelligence, 2, 100015.
Chen, J., Xiao, S., Zhang, P., Luo, K., Lian, D., & Liu, Z. (2024). BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation.
Chi, M. T. H., & Wylie, R. (2014). The ICAP Framework: Linking Cognitive Engagement to Active Learning Outcomes. Educational Psychologist, 49(4), 219–243.
Chui, K. T., Fung, D. C. L., Lytras, M. D., & Lam, T. M. (2020). Predicting at-risk university students in a virtual learning environment via a machine learning algorithm. Computers in Human Behavior, 107, 105584.
Clow, D. (2012). The learning analytics cycle. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 134–138.
Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design Experiments in Educational Research. Educational Researcher, 32(1), 9–13.
Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design Research: Theoretical and Methodological Issues. Journal of the Learning Sciences, 13(1), 15–42.
Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modelling and User-Adapted Interaction, 4(4), 253–278.
Crossley, S., Paquette, L., Dascalu, M., McNamara, D. S., & Baker, R. S. (2016). Combining click-stream data with NLP tools to better understand MOOC completion. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge (pp. 6–14).
Dessì, D., Fenu, G., Marras, M., & Reforgiato Recupero, D. (2019). Bridging learning analytics and Cognitive Computing for Big Data classification in micro-learning video collections. Computers in Human Behavior, 92, 468–477.
El Aouifi, H., El Hajji, M., Es-Saady, Y., & Douzi, H. (2021). Predicting learner’s performance through video sequences viewing behavior analysis using educational data-mining. Education and Information Technologies, 26(5), 5799–5814.
Explosion. (2022). spaCy (3.0). https://spacy.io
Fahd, K., Venkatraman, S., Miah, S. J., & Ahmed, K. (2022). Application of machine learning in higher education to assess student academic performance, at-risk, and attrition: A meta-analysis of literature. Education and Information Technologies, 27(3), 3743–3775.
Ferguson, R., & Clow, D. (2017). Where is the evidence? Proceedings of the Seventh International Learning Analytics & Knowledge Conference (pp. 56–65).
Ferreira‐Mello, R., André, M., Pinheiro, A., Costa, E., & Romero, C. (2019). Text mining in education. WIREs Data Mining and Knowledge Discovery, 9(6).
Fiorella, L., Stull, A. T., Kuhlmann, S., & Mayer, R. E. (2020). Fostering generative learning from video lessons: Benefits of instructor-generated drawings and learner-generated explanations. Journal of Educational Psychology, 112(5), 895–906.
Fischer, C., Pardos, Z. A., Baker, R. S., Williams, J. J., Smyth, P., Yu, R., Slater, S., Baker, R., & Warschauer, M. (2020). Mining Big Data in Education: Affordances and Challenges. Review of Research in Education, 44(1), 130–160.
Gašević, D., Dawson, S., Rogers, T., & Gasevic, D. (2016). Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success. The Internet and Higher Education, 28, 68–84.
Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 64–71.
Graham, S., Harris, K. R., & Santangelo, T. (2015). Research-Based Writing Practices and the Common Core. The Elementary School Journal, 115(4), 498–522.
Graham, S., Kiuhara, S. A., & MacKay, M. (2020). The Effects of Writing on Learning in Science, Social Studies, and Mathematics: A Meta-Analysis. Review of Educational Research, 90(2), 179–226.
Guillot, R., Seanosky, J., Guillot, I., Boulanger, D., Guillot, C., Kumar, V., Fraser, S. N., & Kinshuk, . (2018). Assessing Learning Analytics Systems Impact by Summative Measures. Proceedings of the 18th International Conference on Advanced Learning Technologies, ICALT (pp. 188–190). IEEE.
Guzmán-Valenzuela, C., Gómez-González, C., Rojas-Murphy Tagle, A., & Lorca-Vyhmeister, A. (2021). Learning analytics in higher education: a preponderance of analytics but very little learning? International Journal of Educational Technology in Higher Education, 18(1), 1-19.
Hattie, J., & Timperley, H. (2007). The Power of Feedback. Review of Educational Research, 77(1), 81–112.
Hayati, H., Chanaa, A., Idrissi, M. K., & Bennani, S. (2019). Doc2Vec &Naïve Bayes: Learners’ Cognitive Presence Assessment through Asynchronous Online Discussion TQ Transcripts. International Journal of Emerging Technologies in Learning, 14(8), 70-81.
Hew, K. F., Qiao, C., & Tang, Y. (2018). Understanding Student Engagement in Large-Scale Open Online Courses: A Machine Learning Facilitated Analysis of Student’s Reflections in 18 Highly Rated MOOCs. The International Review of Research in Open and Distributed Learning, 19(3), 69-93.
Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261–266.
Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. To Appear, 7(1), 411–420.
Jivet, I., Scheffel, M., Drachsler, H., & Specht, M. (2017). Awareness is not enough: Pitfalls of learning analytics dashboards in the educational practice. In Data Driven Approaches in Digital Education: 12th European Conference on Technology Enhanced Learning, EC-TEL 2017 (pp. 82-96). Springer International Publishing.
Jurafsky, D., & Martin, J. H. (2023). Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition. NJ: Prentice Hall.
Khajah, M., Lindsey, R. V., & Mozer, M. C. (2016). How deep is knowledge tracing?
Kim, H., & Jeong, Y.-S. (2019). Sentiment Classification Using Convolutional Neural Networks. Applied Sciences, 9(11), 2347.
Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95(2), 163–182.
Larrabee Sønderlund, A., Hughes, E., & Smith, J. (2019). The efficacy of learning analytics interventions in higher education: A systematic review. British Journal of Educational Technology, 50(5), 2594–2618.
Latifi, S., Noroozi, O., & Talaee, E. (2021). Peer feedback or peer feedforward? Enhancing students’ argumentative peer learning processes and outcomes. British Journal of Educational Technology, 52(2), 768–784.
Lee, A., & Lim, T. M. (2016). Mining opinions from university students’ feedback using text analytics. Information Technology in Industry, 4(1), 26-33.
Lim, L.-A., Dawson, S., Gašević, D., Joksimović, S., Fudge, A., Pardo, A., & Gentili, S. (2020). Students’ sense-making of personalised feedback based on learning analytics. Australasian Journal of Educational Technology, 36(6), 15–33.
Lin, F.-R., Hsieh, L.-S., & Chuang, F.-T. (2009). Discovering genres of online discussion threads via text mining. Computers & Education, 52(2), 481–495.
Mangaroska, K., & Giannakos, M. (2019). Learning Analytics for Learning Design: A Systematic Literature Review of Analytics-Driven Design to Enhance Learning. IEEE Transactions on Learning Technologies, 12(4), 516–534.
Manning C. D., Raghavan P., & Schütze H. (2008). Xml retrieval. In Introduction to Information Retrieval (pp. 178-200). Cambridge University Press.
Manovich. (2013). Software Takes Command (A & C Black, Ed.).
Matcha, W., Uzir, N. A., Gasevic, D., & Pardo, A. (2020). A Systematic Review of Empirical Studies on Learning Analytics Dashboards: A Self-Regulated Learning Perspective. IEEE Transactions on Learning Technologies, 13(2), 226–245.
Mayer, R. E. (2005). Cognitive theory of multimedia learning (T. C. handbook of multimedia Learning, Ed.).
Mayer, R. E. (2021). Evidence-Based Principles for How to Design Effective Instructional Videos. Journal of Applied Research in Memory and Cognition, 10(2), 229–240.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 3781.
Moon, S., Potdar, S., & Martin, L. (2014). Identifying student leaders from MOOC discussion forums through language influence. Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs (pp. 15–20).
Olive, D. M., Huynh, D. Q., Reynolds, M., Dougiamas, M., & Wiese, D. (2019). A Quest for a One-Size-Fits-All Neural Network: Early Prediction of Students at Risk in Online Courses. IEEE Transactions on Learning Technologies, 12(2), 171–183.
Pardo, A., Bartimote, K., Buckingham Shum, S., Dawson, S., Gao, J., Gašević, D., Leichtweis, S., Liu, D., Martínez-Maldonado, R., Mirriahi, N., Moskal, A. C. M., Schulte, J., Siemens, G., & Vigentini, L. (2018). OnTask: Delivering Data-Informed, Personalized Learning Support Actions. Journal of Learning Analytics, 5(3), 235-249.
Pardo, A., Jovanovic, J., Dawson, S., Gašević, D., & Mirriahi, N. (2019). Using learning analytics to scale the provision of personalised feedback. British Journal of Educational Technology, 50(1), 128–138.
Pavlik, P. I., Cen, H., & Koedinger, K. R. (2009). Performance factors analysis–a new alternative to knowledge tracing. In V. Dimitrova & R. Mizoguchi (Eds.), Proceedings of the 14th International Conference on Artificial intelligence in education (pp. 531-538). IOS Press.
Ramaswami, G., Susnjak, T., Mathrani, A., & Umer, R. (2023). Use of Predictive Analytics within Learning Analytics Dashboards: A Review of Case Studies. Technology, Knowledge and Learning, 28(3), 959–980.
Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. arXiv preprint arXiv:1908.10084.
Rienties, B., Cross, S., & Zdrahal, Z. (2017). Implementing a Learning Analytics Intervention and Evaluation Framework: What Works? In Big Data and Learning Analytics in Higher Education (pp. 147–166). Springer International Publishing.
Robinson, C., Yeomans, M., Reich, J., Hulleman, C., & Gehlbach, H. (2016). Forecasting student achievement in MOOCs with natural language processing. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge - LAK ’16 (pp. 383–387).
Rossi, L. A., & Gnawali, O. (2014). Language independent analysis and classification of discussion threads in Coursera MOOC forums. In IEEE (Ed.), Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (pp. 654–661). IEEE.
Shute, V. J. (2008). Focus on Formative Feedback. Review of Educational Research, 78(1), 153–189.
Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 30-40.
Teasley, S. D. (2019). Learning analytics: where information science and the learning sciences meet. Information and Learning Sciences, 120(1/2), 59–73.
Torfi, A., Shirvani, R. A., Keneshloo, Y., Tavaf, N., & Fox, E. A. (2020). Natural language processing advancements by deep learning: A survey. arXiv preprint arXiv:2003.01200.
Ullmann, T. D. (2019). Automated analysis of reflection in writing: Validating machine learning approaches. International Journal of Artificial Intelligence in Education, 29(2), 217-257.
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98–110.
Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., & Wei, F. (2023). Improving text embeddings with large language models. arXiv preprint arXiv:2401.00368.
Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., & Wei, F. (2024). Multilingual E5 text embeddings: A technical report. arXiv preprint arXiv:2402.05672.
Wise, A. F., Cui, Y., Jin, W., & Vytasek, J. (2017). Mining for gold: Identifying content-related MOOC discussion threads across domains through linguistic modeling. The Internet and Higher Education, 32, 11–28.
Wisniewski, B., Zierer, K., & Hattie, J. (2020). The Power of Feedback Revisited: A Meta-Analysis of Educational Feedback Research. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.03087
Xiao, S., Liu, Z., Zhang, P., & Muennighof, N. (2023). C-pack: Packaged resources to advance general chinese embedding. arXiv preprint arXiv:2309.07597.
Xing, W., & Du, D. (2019). Dropout Prediction in MOOCs: Using Deep Learning for Personalized Intervention. Journal of Educational Computing Research, 57(3), 547–570.
Yang, J., Du, X., Hung, J.-L., & Tu, C. (2022). Analyzing online discussion data for understanding the student’s critical thinking. Data Technologies and Applications, 56(2), 303–326.
Παναγιωτακόπουλος, Χ., Τσαλίδης, Χ., Γάκης, Π., & Κόκκινος, Θ. (2022). Υπολογιστική γλωσσολογία. Αθήνα: Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις.