Μοντέλο σχεδίασης εφαρμογών επαυξημένης πραγματικότητας για την ειδική αγωγή και αποδοχή του από εκπαιδευτικούς κατά τη διδασκαλία σε μαθητές με ήπια νοητική αναπηρία


Δημοσιευμένα: Ιαν 1, 2024
Λέξεις-κλειδιά:
Νοητική Αναπηρία Επαυξημένη Πραγματικότητα Αποδοχή
Μιχάλης Δελημήτρος
Αναστάσιος Μικρόπουλος
Περίληψη

Η απόκτηση ακαδημαϊκών δεξιοτήτων από μαθητές και φοιτητές με νοητική αναπηρία αποτελεί ένα τρέχον ερευνητικό ζήτημα προσφέροντας γνώσεις για την κατανόηση του κόσμου, και η ψηφιακή τεχνολογία υποστηρίζει αντίστοιχες διδακτικές προτάσεις. Καταγράφεται ερευνητικό κενό στον τρόπο σχεδίασης εκπαιδευτικών εφαρμογών υποστηριζόμενων από την ψηφιακή τεχνολογία για άτομα με νοητική αναπηρία. Η εργασία παρουσιάζει το μοντέλο MILES-D για την ανάπτυξη εφαρμογών Επαυξημένης Πραγματικότητας για την Ειδική Αγωγή. Το μοντέλο εφαρμόζεται για την διδασκαλία της δομής της ύλης και αξιολογείται από εκπαιδευτικούς ως προς την αποδοχή του με ένα εργαλείο προσαρμοσμένο για την επαυξημένη πραγματικότητα. Τα αποτελέσματα ως προς την αποδοχή από τους εκπαιδευτικούς είναι ιδιαίτερα θετικά και αναδεικνύουν την αξία  του μοντέλου για τη σχεδίαση εφαρμογών τεχνολογιών εμβύθισης για άτομα με αναπηρία.


Λεπτομέρειες άρθρου
  • Ενότητα
  • Articles
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Βιογραφικά Συγγραφέων
Μιχάλης Δελημήτρος

Εργαστήριο Εφαρμογών Εικονικής Πραγματικότητας στην Εκπαίδευση, Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης, Πανεπιστήμιο Ιωαννίνων

Αναστάσιος Μικρόπουλος

Εργαστήριο Εφαρμογών Εικονικής Πραγματικότητας στην Εκπαίδευση, Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης, Πανεπιστήμιο Ιωαννίνων

Αναφορές
Almalki, N. (2016). What is the Best Strategy “Evidence-Based Practice” to Teach Literacy Skills for Students with Multiple Disabilities? A Systematic Review. World Journal of Education, 6(6), 18-30. https://doi.org/10.5430/wje.v6n6p18
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association. Retrieved 5 May 2025, from https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596
Avila-Garzon, C., Bacca-Acosta, J., Kinshuk, Duarte, J., & Betancourt, J. (2021). Augmented Reality in Education: An Overview of Twenty-Five Years of Research. Contemporary Educational Technology, 13(3), ep302. https://doi.org/10.30935/cedtech/10865
Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385. https://doi.org/10.1162/pres.1997.6.4.355
Balasuriya, S. S., Sitbon, L., Brereton, M., & Koplick, S. (2019). How can social robots spark collaboration and engagement among people with intellectual disability? In A. Lugmayr, M. Masek, M. Reynolds, M. Brereton (eds.), Proceedings of the 31st Australian Conference on Human-Computer-Interaction (pp. 209–220). NY: ACM. https://doi.org/10.1145/3369457.3370915
Baragash, R. S., Al-Samarraie, H., Alzahrani, A. I., & Alfarraj, O. (2020). Augmented reality in special education: a meta-analysis of single subject design studies. European Journal of Special Needs Education, 35(3), 382–397. https://doi.org/10.1080/08856257.2019.1703548
Barlott, T., Aplin, T., Catchpole, E., Kranz, R., Le Goullon, D., Toivanen, A., & Hutchens, S. (2020). Connectedness and ICT: Opening the door to possibilities for people with intellectual disabilities. Journal of intellectual disabilities, 24(4), 503–521. https://doi.org/10.1177/1744629519831566
CAST (2011). Κατευθυντήριες Γραμμές του Καθολικού Σχεδιασμού για τη Μάθηση. Ανακτήθηκε στις 21 Απριλίου 2025 από https://udlguidelines.cast.org/binaries/content/assets/udlguidelines/udlg-v2-0/udlg-graphicorganizer-v2-0-greek.pdf
Chang, Y.-S., Chang, Y.-J., & Liao, C.-H. (2014). Enabling individuals with cognitive impairments to autonomously manage vocational tasks through use of a mobile augmented reality system. In J. Viteli & M. Leikomaa (eds.), Proceedings of EdMedia & Innovate Learning 2014 (pp. 2612-2617). Waynesville, NC: AACE.
Council for Exceptional Children (2025). Division for Research, https://exceptionalchildren.org
Delimitros, M., Stergiouli, A., Iatraki, G., Mikropoulos, T. A., & Koutromanos, G. (2022). A model for the design of immersive learning enactments for students with disabilities. A literature review-based validation for students with intellectual disability. In J. Barroso, M Neto and S. Besio (eds.), Proceedings of the 10th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion – DSAI (pp. 141-145). NY: ACM. https://doi.org/10.1145/3563137.3563145
Fernández-Batanero, J.M., Montenegro-Rueda, M., & Fernández-Cerero, J. (2022). Use of Augmented Reality for Students with Educational Needs: A Systematic Review (2016–2021). Societies, 12(36). https://doi.org/10.3390/soc12020036
Iatraki, G., Mallidis-Malessas, P., Mikropoulos, T.A. (2020). Digital learning objects support grade-aligned Physics instruction for high school students with mild intellectual disability. In A. Pereira, M. Ribera, C.-K. Yang (eds.), Proceedings of the 9th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion. (pp. 213-218).NY: ACM.
Iatraki, G., Delimitros, M., Vrellis, I., & Mikropoulos, T. A. (2021). Augmented and virtual environments for students with intellectual disability: design issues in Science Education. In M. Chang, D. G. Sampson, A. Tlili, N-S. Chen, Kinshuk, (eds.), 21st IEEE International Conference on Advanced Learning Technologies – ICALT2021 (pp. 381-385). CA: IEEE. https://doi.org/10.1109/ICALT52272.2021.00122
Iatraki, G., & Mikropoulos, T. A. (2022). Augmented reality in physics education: Students with intellectual disabilities inquire the structure of matter. PRESENCE: Virtual and Augmented Reality, 31(1), 89–106. https://doi.org/10.1162/pres_a_00374
Köse, H., & Güner-Yildiz, N. (2021). Augmented reality (AR) as a learning material in special needs education. Education and Information Technologies, 26(2), 1921–1936. https://doi.org/10.1007/s10639-020-10326-w
Lee, K. (2012). Augmented Reality in Education and Training. TechTrends, 56(2), 13–21. https://doi.org/10.1007/s11528-012-0559-3
Maccallum, K., Parsons, D. (2019). Teacher Perspectives on Mobile Augmented Reality: The Potential of Metaverse for Learning. In I. Arnedillo Sánchez, P. Isaías, P. Ravesteijn, & G. Ongena (eds.), Proceedings of the International Conference on Mobile Learning 2019 (pp. 21-28). International Association for Mobile Learning.
Mallidis-Malessas, P., Iatraki, G., & Mikropoulos, T. A. (2021). Teaching Physics to Students With Intellectual Disabilities Using Digital Learning Objects. Journal of Special Education Technology, 37(4), 510-522. https://doi.org/10.1177/01626434211054441
Mantziou, O., Papachristos, N. M., & Mikropoulos, T. A. (2018). Learning activities as enactments of learning affordances in MUVEs: A review-based classification. Education and Information Technologies, 23(4), 1737–1765. https://doi.org/10.1007/s10639-018-9690-x
Mao, C.-C., Sun, C.-C., & Chen, C.-H. (2017). Evaluate Learner’s Acceptance of Augmented Reality Based Military Decision Making Process Training System. In M. Krishnamurthi, M. Iinuma, H. Chishiro, & K. Kaneko (eds.), Proceedings of the 5th International Conference on Information and Education Technology (pp. 73–77). NY: ACM. https://doi.org/10.1145/3029387.3029418
Mikropoulos, T. A., & Natsis, A. (2011). Educational virtual environments: A ten-year review of empirical research (1999–2009). Computers & Education, 56(3), 769–780. https://doi.org/10.1016/j.compedu.2010.10.020
Mikropoulos, T. A., Delimitros, M., & Koutromanos, G. (2022). Investigating the Mobile Augmented Reality Acceptance Model with Pre-Service Teachers. In A. Dengel, M.-L. Bourguet, D. Pedrosa, J. Hutson, K. Erenli, D. Economou, A. Pena-Rios, J. Richter (eds.), Proceedings of the 2022 8th International Conference of the Immersive Learning Research Network (iLRN 2022) (pp. 314-321). iLRN. https://doi.org/10.23919/iLRN55037.2022.9815972
Mikropoulos, T., & Iatraki, G. (2022). Digital technology supports science education for students with disabilities: A systematic review. Education and Information Technologies, 28, 3911–3935. https://doi.org/10.1007/s10639-022-11317-9
Odom, S. L., Brantlinger, E., Gersten, R., Horner, R. H., Thompson, B., & Harris, K. R. (2005). Research in special education: Scientific methods and evidence-based practices. Exceptional Children, 71(2), 137–148. https://doi.org/10.1177/001440290507100201
Polloway, E. A., Patton, J. R., & Marvalin, N., A. (2011). Intellectual and developmental disabilities. In J. M. Kaufman & D. P. Hallahan (eds.), Handbook of special education (pp. 175-186). New York, NY: Routledge.
Preiser, W. F. E., Vischer, J. C., White E. T. (1995). Design Intervention: Toward a More Humane Architecture. Journal of Architectural and Planning Research, 12(3), 309-311.
Radu, I. (2014). Augmented reality in education: a meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18(6), 1533–1543. https://doi.org/10.1007/s00779-013-0747-y
Rao, K., Ok, M. W., & Bryant, B. R. (2014). A review of research on universal design educational models. Remedial and Special Education, 35(3), 153–166. https://doi. org/10.1177/0741932513518980
Sigafoos, J., O’Reilly, M. F., Lancioni, G. E., & Sutherland, D. (2014). Augmentative and Alternative Communication for Individuals with Autism Spectrum Disorder and Intellectual Disability. Current Developmental Disorders Reports, 1(2), 51–57. https://doi.org/10.1007/s40474-013-0007-x
Δελημήτρος, Μ. (2023). Επαυξημένη Πραγματικότητα και Ειδική Αγωγή και Εκπαίδευση: μελέτη αποδοχής και ένα μοντέλο σχεδίασης εφαρμογών. Διδακτορική διατριβή. Πανεπιστήμιο Ιωαννίνων.
Ιατράκη, Γ. (2023). Επαυξημένη Πραγματικότητα στην κατανόηση εννοιών Φυσικής σε μαθητές με Νοητική Αναπηρία. Διδακτορική διατριβή. Πανεπιστήμιο Ιωαννίνων.