Multiple Correspondence Analysis in Social Sciences and Humanities Research: A Longitudinal Mapping


Δημοσιευμένα: Απρ 22, 2024
Λέξεις-κλειδιά:
Πολλαπλή Παραγοντική Ανάλυση Βιβλιομετρία Επιστημομετρία Αναλυση Δεδομένων
Nikos Koutsoupias
https://orcid.org/0000-0003-1664-5404
Περίληψη




Multiple Correspondence Analysis (MCA) is a multivariate nominal categorical data analysis method widely utilized for decades. We use bibliometric methods to investigate MCA related research applied in various fields from 1983 to 2021. The findings include the most important publication channels, authors, papers, and topics. In total, 1208 articles from the Social Sciences, Humanities, and Arts published in 662 journals were examined. Aside from other findings, we discovered 2962 distinct authors who contributed to the development of this research topic, with an annual growth rate of 15,07%. This article provides a broad overview of different perspectives on MCA-based research over time and will be of great assistance to those interested in this area of study.





Λεπτομέρειες άρθρου
  • Ενότητα
  • Βιβλιογραφική Ανασκόπηση
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Αναφορές
Adler, S., & Sarstedt, M. (2021). Mapping the jungle: A bibliometric analysis of research into construal level theory. Psychology & Marketing, 38(9), 1367-1383. DOI: 10.1002/mar.21537
Agbo, F. J., Sanusi, I. T., Oyelere, S. S., & Suhonen, J. (2021). Application of virtual reality in computer science education: A systemic review based on bibliometric and content analysis methods. Education Sciences, 11(3), 142. DOI: 10.3390/educsci11030142
Alhuzali, T., Beh, E. J., & Stojanovski, E. (2022). Multiple correspondence analysis as a tool for examining Nobel Prize data from 1901 to 2018. Plos one, 17(4), e0265929. DOI: 10.1371/journal.pone.0265929
Altarturi, H. H., Saadoon, M., & Anuar, N. B. (2020). Cyber parental control: A bibliometric study. Children and Youth Services Review, 116, 105134. DOI: 10.1016/j.childyouth.2020.105134
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975. DOI: 10.1016/j.joi.2017.08.007
Aria, M., Misuraca, M., & Spano, M. (2020). Mapping the evolution of social research and data science on 30 years of Social Indicators Research. Social indicators research, 149(3), 803-831. DOI: 10.1007/s11205-020-02281-3
Bapte, V. D. (2021). Media Literacy: A Scientometric Study Based on Web of Science during 1989-2020. DESIDOC Journal of Library & Information Technology, 41(4). DOI: 10.14429/djlit.41.4.16301
Beh, E. J., & Lombardo, R. (2014). Correspondence analysis: Theory, practice and new strategies. Chichester, England: Wiley.
Beh, E.J., & Lombardo, R. (2019), “Multiple and multiway correspondence analysis”, Wiley Interdisciplinary Reviews: Computational Statistics, e1464. DOI: 10.1002/wics.1464
Bond, M., & Buntins, K. (2018). An analysis of the Australasian journal of educational technology 2013-2017. Australasian journal of educational technology, 34(4). DOI: 10.14742/ajet.4359
Bond, M., Zawacki‐Richter, O., & Nichols, M. (2019). Revisiting five decades of educational technology research: A content and authorship analysis of the British Journal of Educational Technology. British journal of educational technology, 50(1), 12-63. DOI: 10.1111/bjet.12730
Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social science information, 22(2), 191-235. DOI: 10.1177/053901883022002003
Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22(1), 155-205. DOI: 10.1007/bf02019280
Carammia, M. (2022). A bibliometric analysis of the internationalisation of political science in Europe. European Political Science, 1-32. DOI:10.1057/s41304-022-00367-9
Carlier, A., & Kroonenberg, P. M. (1996). Decomposition and biplots in three-way correspondence analysis. Psychometrika, 61, 355–373. DOI: 10.1007/BF02294344
Cavalcante, M. D. S., Kerr, L. R. F. S., Brignol, S. M. S., Silva, D. D. O., Dourado, I., Galvão, M. T. G., & Kendall, C. (2013). Sociodemographic factors and health in a population of children living in families infected with HIV in Fortaleza and Salvador, Brazil. AIDS care, 25(5), 550-558. DOI: 10.1080/09540121.2012.726343
Chen, Y., & Silva, E. A. (2021). Smart transport: A comparative analysis using the most used indicators in the literature juxtaposed with interventions in English metropolitan areas. Transportation research interdisciplinary perspectives, 10, 100371. DOI: 10.1016/j.trip.2021.100371
Cheng, B., Wang, M., Mørch, A. I., Chen, N. S., & Spector, J. M. (2014). Research on e-learning in the workplace 2000–2012: a bibliometric analysis of the literature. Educational research review, 11, 56-72. DOI: 10.1016/j.edurev.2014.01.001
Choulakian, V. (2008). Multiple taxicab correspondence analysis. Advances in Data Analysis and Classification, 2, 177–206. DOI: 10.1007/s11634-008-0023-6
Cobo, M. J., López‐Herrera, A. G., Herrera‐Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for information Science and Technology, 62(7), 1382-1402. DOI: 10.1002/asi.21525
Cohen, J. (1988). Set correlation and contingency tables. Applied psychological measurement, 12(4), 425-434. DOI: 10.1177/014662168801200410
De la Hoz-Correa, A., Muñoz-Leiva, F., & Bakucz, M. (2018). Past themes and future trends in medical tourism research: A co-word analysis. Tourism Management, 65, 200-211. DOI: 10.1016/j.tourman.2017.10.001
Deng, S., Xia, S., Hu, J., Li, H., & Liu, Y. (2021). Exploring the topic structure and evolution of associations in information behavior research through co-word analysis. Journal of Librarianship and Information Science, 53(2), 280-297. DOI: 10.1177/0961000620938120
Ding, Y., Chowdhury, G. G., & Foo, S. (2001). Bibliometric cartography of information retrieval research by using co-word analysis. Information processing & management, 37(6), 817-842. DOI: 10.1016/S0306-4573(00)00051-0
Diodato, V. P., & Gellatly, P. (2013). Dictionary of bibliometrics. Routledge.
Doméjean, S., Léger, S., Rechmann, P., White, J. M., & Featherstone, J. D. (2015). How do dental students determine patients’ caries risk level using the caries management by risk assessment (CAMBRA) system?. Journal of dental education, 79(3), 278-285. DOI: 10.1002/j.0022-0337.2015.79.3.tb05882.x
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. DOI: 10.1016/j.jbusres.2021.04.070
Dungey, M., Tchatoka, F. D., & Yanotti, M. B. (2018). Using multiple correspondence analysis for finance: A tool for assessing financial inclusion. International Review of Financial Analysis, 59, 212-222.
DOI: 10.1016/j.irfa.2018.08.007
Garfield, E. (1990). KeyWords Plus-ISI's breakthrough retrieval method. 1. Expanding your searching power on current-contents on diskette. Current contents, 32, 5-9. DOI: 10.1016/j.irfa.2018.08.007
Gibadullina, A. (2021). The birth and development of Anglophone financial geography: A historical analysis of geographical studies of money and finance. Geoforum, 125, 150-167. DOI: 10.1016/j.geoforum.2021.06.009
Gower, J. C. (1990). Fisher's optimal scores and multiple correspondence analysis. Biometrics, 46, 947–961.
DOI: 10.2307/2532440
Greenacre, M. J., & Blasius, J. (2006). Multiple correspondence analysis and related methods. London, England: Chapman & Hall/CRC.
Grant, J., Cottrell, R., Cluzeau, F., & Fawcett, G. (2000). Evaluating “payback” on biomedical research from papers cited in clinical guidelines: applied bibliometric study. Bmj, 320(7242), 1107-1111.
DOI: 10.1136/bmj.320.7242.1107
Grivel, L., Mutschke, P., & Polanco, X. (1995). Thematic mapping on bibliographic databases by cluster analysis: A description of the SDOC environment with SOLIS. Journal of Knowledge Organization, 22(2), 70-77.
Guraya, S. S., Guraya, S. Y., & Yusoff, M. S. B. (2021). Preserving professional identities, behaviors, and values in digital professionalism using social networking sites; a systematic review. BMC medical education, 21(1), 1-12. DOI: 10.1186/s12909-021-02802-9
Han, L., Benseler, S. M., & Tyrrell, P. N. (2018). Cluster and multiple correspondence analyses in rheumatology: paths to uncovering relationships in a sea of data. Rheumatic Disease Clinics, 44(2), 349-360.
DOI: 10.1016/j.rdc.2018.01.013
Hjellbrekke, J. (2018). Multiple correspondence analysis for the social sciences. Routledge.
Ho, M. T., Mantello, P., Nguyen, H. K. T., & Vuong, Q. H. (2021). Affective computing scholarship and the rise of China: a view from 25 years of bibliometric data. Humanities and Social Sciences Communications, 8(1), 1-14. DOI: 10.1057/s41599-021-00959-8
Husson, F., & Josse, J. (2014). Multiple correspondence analysis. In J. Blasius & M. Greenacre (Eds.), Visualization and verbalization of data (pp. 165–183). Boca Raton, FL: CRC Press. DOI: 10.1201/b16741-17
Hwang, H., Tomiuk, M. A., & Takane, Y. (2009). Correspondence analysis, multiple correspondence analysis and recent developments. Handbook of quantitative methods in psychology, 243-263.
Jalayer, M., Pour-Rouholamin, M., & Zhou, H. (2018). Wrong-way driving crashes: A multiple correspondence approach to identify contributing factors. Traffic injury prevention, 19(1), 35-41.
DOI: 10.1080/15389588.2017.1347260
Jensen, M. R., & Moses, J. W. (2021). The state of political science, 2020. European Political Science, 20(1), 14-33. DOI: 10.1057/s41304-020-00297-4
Jing, P., Pan, K., Yuan, D., Jiang, C., Wang, W., Chen, Y., ... & Xie, J. (2021). Using bibliometric analysis techniques to understand the recent progress in school travel research, 2001–2021. Journal of Transport & Health, 23, 101265. DOI: 10.1016/j.jth.2021.101265
Kamalja, K. K., & Khangar, N. V. (2017). Multiple Correspondence Analysis and its applications. Electronic Journal of Applied Statistical Analysis, 10(2), 432-462.
Kroonenberg, P. M. (2014). History of multiway component analysis and three-way correspondence analysis. In J. Blasius & M. Greenacre (Eds.), Visualization and verbalization of data (pp. 77–93). London, England: CRC Press.
Latocha, A. (2020). Modern transformation of deserted settlements in the Sudetes Mountains, SW Poland. GeoScape, 14(2). DOI: 10.2478/geosc-2020-0008
Le Roux, B., & Rouanet, H. (2004). Geometric data analysis: from correspondence analysis to structured data analysis. Springer Science & Business Media.
Leung, X. Y., Sun, J., & Bai, B. (2017). Bibliometrics of social media research: A co-citation and co-word analysis. International Journal of Hospitality Management, 66, 35-45. DOI: 10.1016/j.ijhm.2017.06.012
Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175-194. DOI: 10.1177/0312896219877678
Liotta, G., O’Caoimh, R., Gilardi, F., Proietti, M. G., Rocco, G., Alvaro, R., ... & Marazzi, M. C. (2017). Assessment of frailty in community-dwelling older adults residents in the Lazio region (Italy): A model to plan regional community-based services. Archives of Gerontology and Geriatrics, 68, 1-7. DOI: 10.1016/j.archger.2016.08.004
Liu, Z., Moon, J., Kim, B., & Dai, C. P. (2020). Integrating adaptivity in educational games: A combined bibliometric analysis and meta-analysis review. Educational technology research and development, 68(4), 1931-1959. DOI: 10.1007/s11423-020-09791-4
López‐Fernández, M. C., Serrano‐Bedia, A. M., & Pérez‐Pérez, M. (2016). Entrepreneurship and family firm research: A bibliometric analysis of an emerging field. Journal of Small Business Management, 54(2), 622-639. DOI: 10.1111/jsbm.12161
Lucchetti, M., Corsonello, A., & Gattaceca, R. (2008). Environmental and social determinants of aging perception in metropolitan and rural areas of Southern Italy. Archives of Gerontology and Geriatrics, 46(3), 349-357.
DOI: 10.1016/j.archger.2007.05.009
Macheridis, S. (2017). The use of multiple correspondence analysis (MCA) in taphonomy: The case of Middle Helladic Asine, Greece. International Journal of Osteoarchaeology, 27(3), 477-487.
DOI; 10.1002/oa.2571
Mair, L., Mill, A. C., Robertson, P. A., Rushton, S. P., Shirley, M. D., Rodriguez, J. P., & McGowan, P. J. (2018). The contribution of scientific research to conservation planning. Biological Conservation, 223, 82-96.
DOI: 10.1016/j.biocon.2018.04.037
Mansfield, T. J., Peck, D., Morgan, D., McCann, B., & Teicher, P. (2018). The effects of roadway and built environment characteristics on pedestrian fatality risk: A national assessment at the neighborhood scale. Accident Analysis & Prevention, 121, 166-176. DOI: 10.1016/j.aap.2018.06.018
Maretti, M., Tontodimamma, A., & Biermann, P. (2019). Environmental and climate migrations: an overview of scientific literature using a bibliometric analysis. International Review of Sociology, 29(2), 142-158.
DOI: 10.1080/03906701.2019.1641270
Markos, A., Menexes, G., & Papadimitriou, T. (2009). Multiple correspondence analysis for "tall" data sets. Intelligent Data Analysis, 13, 873–885. DOI: 10.3233/IDA-2009-0398
Martin-Mazé, M. (2018). Multiple Correspondence Analysis in International Relations. In Resources and Applied Methods in International Relations (pp. 139-149). Palgrave Macmillan, Cham.
DOI: 10.1007/978-3-319-61979-8_10
Medie, P. A., & Kang, A. J. (2018). Power, knowledge and the politics of gender in the Global South. European Journal of Politics and Gender, 1(1-2), 37-54. DOI: 10.1332/251510818X15272520831157
Meyer, N., Ferlicot, S., Vieillefond, A., Peyromaure, M., & Vielh, P. (2004). Contribution of multiple correspondence analysis in histopathology. In Annales de pathologie (Vol. 24, No. 2, pp. 149-160).
DOI: 10.1016/s0242-6498(04)93938-7
Moreno, X., Sánchez, H., Huerta, M., Albala, C., & Márquez, C. (2016). Social representations of older adults among Chilean elders of three cities with different historical and sociodemographic background. Journal of cross-cultural gerontology, 31(2), 115-128. DOI: 10.1007/s10823-016-9288-y
Mori, Y., Kuroda, M., & Makino, N. (2016). Multiple correspondence analysis. In Nonlinear principal component analysis and its applications (pp. 21-28). Springer, Singapore.
Palat, B., Saint Pierre, G., & Delhomme, P. (2019). Evaluating individual risk proneness with vehicle dynamics and self-report data˗ toward the efficient detection of At-risk drivers. Accident Analysis & Prevention, 123, 140-149. DOI: 10.1016/j.aap.2018.11.016
Patel, P., & Bhatt, A. (2021). Growth and impact of scholarly contributions for SP University: A Bibliometric Analysis. Library Philosophy and Practice (e-journal), 20.
Peez, A. (2022). Contributions and blind spots of constructivist norms research in international relations, 1980–2018: A systematic evidence and gap analysis. International Studies Review, 24(1), viab055. DOI: 10.1093/isr/viab055
Pham-Duc, B., Tran, T., Trinh, T. P. T., Nguyen, T. T., Nguyen, N. T., & Le, H. T. T. (2022). A spike in the scientific output on social sciences in Vietnam for recent three years: Evidence from bibliometric analysis in Scopus database (2000–2019). Journal of Information Science, 48(5), 623-639. DOI: 10.1177/0165551520977447
Pierreval, H. (1994). Using multiple correspondence analysis in the analysis of simulation experiments: a study of dynamic scheduling strategies. International Transactions in Operational Research, 1(2), 147-157.
DOI: 10.1016/0969-6016(94)90016-7
Radhakrishnan, S., Erbis, S., Isaacs, J. A., & Kamarthi, S. (2017). Novel keyword co-occurrence network-based methods to foster systematic reviews of scientific literature. PloS one, 12(3), e0172778.
DOI: 10.1371/journal.pone.0172778
Ravikumar, S., Agrahari, A., & Singh, S. N. (2015). Mapping the intellectual structure of scientometrics: A co-word analysis of the journal Scientometrics (2005–2010). Scientometrics, 102(1), 929-955.
DOI: 10.1007/s11192-014-1402-8
Rodrigues, S. P., Van Eck, N. J., Waltman, L., & Jansen, F. W. (2014). Mapping patient safety: a large-scale literature review using bibliometric visualisation techniques. BMJ open, 4(3), e004468.
DOI: 10.1007/s11192-014-1402-8
Rosas-Chavoya, M., Gallardo-Salazar, J. L., López-Serrano, P. M., Alcántara-Concepción, P. C., & León-Miranda, A. K. (2022). QGIS a constantly growing free and open-source geospatial software contributing to scientific development. Cuadernos de Investigación Geográfica, 48(1), 197-213. DOI: 10.18172/cig.5143
Rozylowicz, L., Nita, A., Manolache, S., Ciocanea, C. M., & Popescu, V. D. (2017). Recipe for success: A network perspective of partnership in nature conservation. Journal for Nature Conservation, 38, 21-29.
DOI: 10.1016/j.jnc.2017.05.005
Savage, M., Devine, F., Cunningham, N., Taylor, M., Li, Y., Hjellbrekke, J., ... & Miles, A. (2013). A new model of social class? Findings from the BBC’s Great British Class Survey experiment. Sociology, 47(2), 219-250.
DOI: 10.1177/0038038513481128
Shiau, W. L., Dwivedi, Y. K., & Yang, H. S. (2017). Co-citation and cluster analyses of extant literature on social networks. International Journal of Information Management, 37(5), 390-399.
DOI: 10.1016/j.ijinfomgt.2017.04.007
Schneider, S., & Bengler, K. (2020). Virtually the same? Analysing pedestrian behaviour by means of virtual reality. Transportation research part F: traffic psychology and behaviour, 68, 231-256.
DOI: 10.1016/j.trf.2019.11.005
Song, Y., et al. (2019). Exploring two decades of research on classroom dialogue by using bibliometric analysis. Computers in Education, 137, 12–31. DOI: 10.1016/j.compedu.2019.04.002
Tenenhaus, M., & Young, F. W. (1985). An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. Psychometrika, 50, 91–119. DOI: 10.1007/BF02294151
Tontodimamma, A., Nissi, E., Sarra, A., & Fontanella, L. (2021). Thirty years of research into hate speech: topics of interest and their evolution. Scientometrics, 126(1), 157-179.
DOI: 10.1007/s11192-020-03737-6
Van der Heijden, P. G., Teunissen, J., & van Orle, C. (1997). Multiple correspondence analysis as a tool for quantification or classification of career data. Journal of Educational and Behavioral Statistics, 22(4), 447-477. DOI: 10.3102/10769986022004447
Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. scientometrics, 84(2), 523-538. DOI: 10.1007/s11192-009-0146-3
Van Nunen, K., Li, J., Reniers, G., & Ponnet, K. (2018). Bibliometric analysis of safety culture research. Safety Science, 108, 248-258. DOI: 10.1016/j.ssci.2017.08.011
Veenstra, G. (2007). Social space, social class and Bourdieu: Health inequalities in British Columbia, Canada. Health & place, 13(1), 14-31. DOI: 10.1016/j.healthplace.2005.09.011
Waheed, H., Hassan, S. U., Aljohani, N. R., & Wasif, M. (2018). A bibliometric perspective of learning analytics research landscape. Behaviour & Information Technology, 37(10-11), 941-957.
DOI: 10.1016/j.healthplace.2005.09.011
Wang, Z. Y., Li, G., Li, C. Y., & Li, A. (2012). Research on the semantic-based co-word analysis. Scientometrics, 90(3), 855-875. DOI: 10.1007/s11192-011-0563-y
Xie, H., Zhang, Y., Wu, Z., & Lv, T. (2020). A bibliometric analysis on land degradation: Current status, development, and future directions. Land, 9(1), 28. DOI: 10.3390/land9010028
Xu, J., Lu, W., Xue, F., Chen, K., Ye, M., Wang, J., & Chen, X. (2018). Cross-boundary collaboration in waste management research: A network analysis. Environmental Impact Assessment Review, 73, 128-141.
DOI: 10.1016/j.eiar.2018.08.005
Youngblood, M., & Lahti, D. (2018). A bibliometric analysis of the interdisciplinary field of cultural evolution. Palgrave Communications, 4(1), 1-9. DOI: 10.1057/s41599-018-0175-8
Zhu, M., Li, Y., & Wang, Y. (2018). Design and experiment verification of a novel analysis framework for recognition of driver injury patterns: From a multi-class classification perspective. Accident Analysis & Prevention, 120, 152-164. DOI: 10.1016/j.aap.2018.08.011