Η ΕΠΙΔΡΑΣΗ ΤΟΥ ΠΛΑΙΣΙΟΥ ΣΥΝΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΗΤΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΟΝ ΤΡΟΠΟ ΥΠΟΛΟΓΙΣΜΟΥ ΤΟΥΣ: Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΝΟΕΡΩΝ ΠΑΡΕΝΘΕΣΕΩΝ
Δημοσιευμένα:
Sep 17, 2019
Λέξεις-κλειδιά:
Παρένθεση δομή προτεραιότητα πράξεων
Περίληψη
Στην εργασία αυτή ερευνάται το πώς επιδρά η γραπτή μορφή μίας αριθμητικής παράστασης στον τρόπο υπολογισμού της, δεδομένου ότι αυτός απαιτεί τη χρήση παρενθέσεων. Συγκεκριμένα, ζητήθηκε από μαθητές της Ε’ και Στ’ Δημοτικού να υπολογίσουν μια σειρά από κλασματικές παραστάσεις. Τα ευρήματα της έρευνας δείχνουν ότι η κλασματική μορφή των παραστάσεων φαίνεται να επηρεάζει τον τρόπο υπολογισμού τους από τους μαθητές επιβάλλοντας ουσιαστικά τον τρόπο ανάλυσης που θα πρέπει να ακολουθηθεί. Η επίδραση αυτή είναι εμφανής στους μαθητές και των δύο τάξεων. Κύριο χαρακτηριστικό του πως εκφράζεται η επίδραση αυτή είναι η τάση των μαθητών να αφήνουν κατά μέρος τους κανόνες για την προτεραιότητα των πράξεων και τη χρήση των παρενθέσεων χωρίς αυτό όμως να σημαίνει πάντοτε ότι δεν τους γνωρίζουν. Οι μαθητές αν και φαινομενικά ακολουθούν μια μαθηματική διαδικασία που είναι προβληματική, κάνουν χρήση αυτών που στην έρευνα αποκαλούνται ‘νοερές’ παρενθέσεις προκειμένου να διατηρήσουν τη δομή της αρχικής παράστασης και να φτάσουν στο σωστό αποτέλεσμα.
Λεπτομέρειες άρθρου
- Πώς να δημιουργήσετε Αναφορές
-
Παπαδόπουλος (Ioannis Papadopoulos) Ι., & Ελευθεριάδης (Ioannis Eleftheriadis) Ι. (2019). Η ΕΠΙΔΡΑΣΗ ΤΟΥ ΠΛΑΙΣΙΟΥ ΣΥΝΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΗΤΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΟΝ ΤΡΟΠΟ ΥΠΟΛΟΓΙΣΜΟΥ ΤΟΥΣ: Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΝΟΕΡΩΝ ΠΑΡΕΝΘΕΣΕΩΝ. Έρευνα στη Διδακτική των Μαθηματικών, (12), 23–41. https://doi.org/10.12681/enedim.21143
- Ενότητα
- Άρθρα
Αυτή η εργασία είναι αδειοδοτημένη υπό το CC Αναφορά Δημιουργού 4.0.
Οι συγγραφείς των άρθρων που δημοσιεύονται στο περιοδικό διατηρούν τα δικαιώματα πνευματικής ιδιοκτησίας επί των άρθρων τους, δίνοντας στο περιοδικό το δικαίωμα της πρώτης δημοσίευσης. Άρθρα που δημοσιεύονται στο περιοδικό διατίθενται με άδεια Creative Commons BY και σύμφωνα με την άδεια μπορούν να χρησιμοποιούνται ελεύθερα, με αναφορά στο/στη συγγραφέα και στην πρώτη δημοσίευση.Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Αναφορές
Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(3), 24-35.
Arcavi, A. (2005). Developing and using symbol sense in mathematics. For the Learning of Mathematics, 25(2), 42-47.
Bannerjee, R., & Subramaniam, K. (2005). Developing procedure and structure sense of arithmetic expressions. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 121-128). Melbourne, Australia: PME.
Blando, J. A., Kelly, A. E., Schneider, B. R., & Sleeman, D. (1989). Analyzing and modeling arithmetic errors. Journal of Research in Mathematics Education, 20(3), 301–308. https://doi.org/10.2307/749518
Booth, L. R. (1984). Algebra: Children’s strategies and errors. Windsor, UK: NFER-Nelson.
Booth, L. R. (1988). Children’s difficulties in beginning algebra. In A. F. Coxford and A. P. Schulte (Eds.), The ideas of algebra, k-12 (1988 yearbook) (pp. 20–32). Reston, VA: National Council of Teachers of Mathematics.
Braithwaite, D. W., Pyke, A. A., & Siegler, R. S. (2017). A computational model of fraction arithmetic. Psychological review, 124(5), 603. https://doi.org/10.1037/rev0000072
Bryman, A. (2015). Social research methods. Oxford university press.
Gallardo, A. (1995). Negative numbers in the teaching of arithmetic. Repercussions in elementary algebra. In M. Owens, M. Reeds & G. Millsaps (Eds.), Proceedings of the 17th Annual Meeting for the Psychology of Mathematics Education (North America) (Vol. 1, pp. 158-163). Ohio: PME.
Gunnarsson, R., & Karlsson, A. (2015). Brackets and the structure sense. In O. Helenius, A. Engström, T. Meaney, P. Nilsson, E. Norén, J. Sayers & M. Österholm (Eds.), Proceedings of the 9th Swedish Mathematics Education Research Seminar (pp. 47-55). Umea, Sweden: MADIF.
Gunnarsson, R., Hernell, B., & Sönnerhed, W. W. (2012). Useless brackets in arithmetic expressions with mixed operations. In T. Y. Tso (Ed.), Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 275–282). Taipei, Taiwan: PME.
Gunnarsson, R., Sönnerhed, W. W., & Hernell, B. (2016). Does it help to use mathematically superfluous brackets when teaching the rules for the order of operations? Educational Studies in Mathematics, 92(1), 91-105. https://doi.org/10.1007/s10649-015-9667-2
Hewitt, D. (2005). Chinese whispers - algebra style: Grammatical, notational, mathematical and activity tensions. In H. L. Chick and J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for Psychology of Mathematics Education (Vol. 3, pp. 129–136). Melbourne, Australia: PME.
Hoch, M., & Dreyfus, T. (2004). Structure sense in high school algebra: The effect of brackets. In M. J. Hoines and A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 49-56). Bergen, Norway: PME.
Hoch, M., & Dreyfus, T. (2010). Developing Katy’s algebraic structure sense. In V. Durand-Guerrier, S. Soury-Lavergne and F. Arzarello (Eds.), Proceedings of the 6th Conference of European Research in Mathematics Education, (pp. 529-538). Lyon, France: CERME.
Kieran, C. (1979). Children's operational thinking within the context of bracketing and the order of operations. In D. Tall (Ed.), Proceedings of the 3rd Conference of the International Group for the Psychology of Mathematics Education (pp. 128–133). Warwick, UK: PME.
Landy, D., & Goldstone R. L. (2007). The alignment of ordering and space in arithmetic computation. In D. S. McNamara & J. G. Trafton (Eds.), Proceedings of the 29th Annual Conference of the Cognitive Science Society (pp. 437–442). Austin, TX: Cognitive Science Society.
Landy, D., & Goldstone, R. L. (2010). Proximity and precedence in arithmetic. The Quaterly Journal of Experimental Psychology, 63(10), 1953–1968. https://doi.org/10.1080/17470211003787619
Liebenberg, R., Sasman, M., & Olivier, A. (1999). From numerical equivalence to algebraic equivalence. Proceedings of the Fifth Annual Conference of the Association for Mathematics Education in South Africa (Vol. 2, pp. 173–83). Port Elizabeth: Port Elizabeth Technikon
Linchevski, L. & Herscovics, N. (1994). Cognitive obstacles in pre-algebra. In J. Matos (Ed.), Proceedings of the 18th Conference of the International Group for the Psychology of Mathematics Education (vol.3, pp. 176-183). Lisbon, Portugal: PME.
Linchevski, L. (1995). Algebra with numbers and arithmetic with letters: A definition of pre-algebra. The Journal of Mathematical Behavior, 14(1), 113–120. https://doi.org/10.1016/0732-3123(95)90026-8
Linchevski, L., & Herscovics, N. (1996). Crossing the cognitive gap between arithmetic and algebra: Operating on the unknown in the context of equations. Educational Studies in Mathematics, 30(1), 39-65. https://doi.org/10.1007/bf00163752
Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40(2), 173-196. https://doi.org/10.1023/A:1003606308064
Marchini, C., & Papadopoulos, I. (2011). Are useless brackets useful tools for teaching? In B. Ubus (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 185-192). Ankara, Turkey: PME.
Mayring, P. (2014). Qualitative Content Analysis: Theoretical Foundation, Basic Procedures and Software Solution. Klagenfurt: Beltz.
Okazaki, M. (2006). Semiotic chaining in an expression constructing activity aimed at the transition from arithmetic to algebra. In J. Novotná, H. Moraová, M. Krátká, & N.
Stehlíkova (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 257– 264). Prague, Czech Republic: PME.
Payne, S. J., & Squibb, H. R. (1990). Algebra Mal‐Rules and Cognitive Accounts of Error. Cognitive science, 14(3), 445-481. https://doi.org/10.1016/0364-0213(90)90019-s
Radford, L. (2000). Signs and meanings in students’ emergent algebraic thinking: a semiotic analysis. Educational Studies in Mathematics, 42(3), 237 – 268. https://doi.org/10.1023/A:101753082
Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive psychology, 62(4), 273-296. https://doi.org/10.1016/j.cogpsych.2011.03.001
Welder, R. M. (2012). Improving algebra preparation: Implications from research on student misconceptions and difficulties. School Science and Mathematics, 112(4), 255-
Wu, H. (2007). “Order of operations” and other oddities in school mathematics. Ανακτήθηκε από https://math.berkeley.edu/~wu/order5.pdf (πρόσβαση στις 13 Ιουλίου, 2017).