DECAY PARAMETERS OF AFTERSHOCK SEQUENCES GLOBALLY DISTRIBUTED


Published: Jan 25, 2010
Keywords:
c-parameter k-parameter aftershocks decay laws west and east side of Pacific rim Eurasia belt
T.M. Tsapanos
G. Ch. Koravos
A. Plessa
N.K. Vythoulkas
I.S. Pitsonis
Abstract
The evaluation of the parameters c and k of the decay law of the aftershocks in an earthquake sequence has been carried out in this study. For this reason 170 seismic sequences globally distributed, during the time period 1964-1986, were performed. All of them modelled well by Omori’s law. We estimated that the mean global values of and parameters , are 0.660+0.181 and - 0.341+0.090, respectively. The values of these parameters are also estimated for different regions of the world, west and east part of circum-Pacific rim, as well as for the Eurasia belt.The parameters c and k calculated for the various regions of the world found to be spread around the global average, although admittedly few exceptions to this generalization are also observed to exist.
Article Details
  • Section
  • Seismology
Downloads
Download data is not yet available.
References
Coral, A., 2007. Statistical features of earthquake temporal occurrence. Lect. NotesPhys. 705, 191-
Felzer, K.R. and Bronsky, E.E., 2006. Decay of aftershock density with distance indicates triggering
by dynamic stress. Nature 441, 735-738.
Kagan, Y.Y. and Houston, H, 2005. Relation between mainshock rupture process and Omori’s law
for aftershock moment release rate. Geophys. J. Int. 163, 1039-1048.
Kisslinger, C., L. M. and Jones, L., 1991. Properties of aftershock sequences in southern
California. J. Geophys. Res. 96, 11, 947-11, 958.
Lolli, B. and Gasperini, P., 2006. Comparing different models of aftershock rate decay: The role of
the catalog. Tectonophysics 423, 43-59.
Narteau, C., Shebalin, P. and Holschneider, M., 2002. Temporal limits of the power law aftershock
decay rate. J. Geophys. Res.107 B12, 2359.
Narteau, C., Shebalin, P. and Holschneider, M., 2008.The onset of the aftershock decay rate across
different stress regimes. Geophys. Res. Abstrs. 10, EGU2008-A-05624.
Omori, F., 1895. On the aftershocks of earthquakes. J. Coll. Sci. Imp. Univ. Tokyo 7, 111-200.
Page, B., 1968. Aftershocks and micro-aftershocks of great Alaska earthquake of 1964. Bull. Seism.
Soc. Am.58, 1131-1168.
Parsons, T., 2002. Global Omori law decay of triggered earthquakes: Large aftershocks outside the
classical aftershock zone. J. Geophys. Res.107, B9, pp. ESE9.1-ESE9.20.
Ranalli, G., 1969. A statistical study of aftershock sequences. Ann. Geofisica 22, 359-397.
Reasenberg, P.A. and Jones, L.M., 1989. Earthquake hazard after a mainshock in California. Science
, 1173-1176.
Reasenberg, P.A. and Jones, L.M., 1994. Earthquake aftershocks update. Science 265, 1251-1252.
Shcherbakov, R. Turcotte, D.L. and Rudle, J.B., 2006. Scaling properties of the Parkfield aftershock
sequences. Bull. Seismol. Soc. Am. 96, S376-S384.
Tajima, F. and Kanamori, H., 1985. Global survey of aftershock area expansion patterns. Phys. Earth
planet. Inter.40, 77-134.
XLIII, No 4 – 2198
Tsapanos, T.M., 1990a. Spatial distribution of the difference between the magnitudes of the main
shock and the largest aftershock in the circum-Pacific belt. Bull. Seism. Soc. Am.80, 1180-1189.
Tsapanos, T.M., 1990b. B-Values of two tectonic parts in the circum-Pacific belt. Pageoph 134, 229-
Tsapanos, T.M., Karakaisis, G.F., Hatzidimitriou, P.M. and Scordilis, E.M. 1988. On the probability
of the time of occurrence of the largest aftershock and the largest foreshock in seismic sequence.
Tectonophysics149, 177-180.
Tsapanos, T.M., Moutafi, Z.D., Gabrielidis, J.N., Spyrou, T.D. and Papazachos, C.B., 1994. Properties
of the globally distributed aftershock sequences” emphasis in the circum-Pacific belt. Bulletin
of the Geological Society of Greece XXX/5, 151-158.
Utsu, T. 1961. A statistical study on the occurrence of aftershocks. Geophys. Mag. Tokyo 30, 521-
Utsu, T. 1969. Aftershocks and earthquake statistics (I). J. Faculty Science Hokkaido Univ., 7, 521-
Utsu, T., Ogata, Y. and Matsumura, R.S., 1995. The centenary of the Omori formula for a decay law
of aftershocks activity, J Phys Earth 43, 1–33.
Vinogradov, S.D., 2008. Aftershock sequences as evidence for relaxation process in a region containing
an earthquake source. Izvestiya Physics of the Solid Earth 44, 138-141.
Most read articles by the same author(s)