| More


Views: 502 Downloads: 172
E.M. Olasoglou, T.M. Tsapanos, E.E. Papadimitriou, G.N. Drakatos
E.M. Olasoglou, T.M. Tsapanos, E.E. Papadimitriou, G.N. Drakatos


study on the aftershock sequences distributed along the subductions in Japan and Kuril islands, as well as in Kamchatka is undertaken. Aftershock sequences, having a main shock magnitude Mw >7.0, during the time period 1973-2013 are taken into account. The data used (mainshocks, aftershocks and foreshocks if there are any) are restricted in shallow focal depths. A large earthquake in Japan Trench (11 March 2011 / Mw=9.0) occurred and for this reason the investigated area is of particular interest. Our study is concentrated on the spatial distribution of some parameters [Mc, a, b (Gutenberg-Richter distribution) and p, c, k (Omori’s law)] closely associated with the seismic sequences statistics.


aftershock sequences; spatial distribution of aftershock parameters; Japan; Kuril Islands; Kamchatka;

Full Text:



Davis, S.D. and Frohlich, C., 1991. Single-link cluster analysis of earthquake aftershocks: Decay

laws and regional variations, J. Geophys. Res., 96, 6335-6350.

Dieterich, J., 1986. A model for the nucleation of earthquake slip. In: Earthquake Source

Mechanism, Das, S., Boatwright, J. and Scholz, C., eds., Geophysical Monograph Series,

Am. Geoohys. Un., 37, 37-47, Washington, D.C., U.S.A.

Drakatos, G., 2000. Relative Seismic Quiescence before Large Aftershocks, Pure and Appl.

Geophysics, 157, 1407-1421.

Felzer, K.R., Abercrombie, R.E. and Ekstrom, G., 2004. A common origin of aftershocks,

foreshocks, and multiplets, Bull. Seismol. Soc. Am., 94, 88-98.

Frohlich, C., 1987. Aftershocks and temporal clustering of deep earthquakes, J. Geophys. Res., 92, 1394-13956.

Gibowitz, S.J., 1973. Stress drop and aftershocks, Bull. Seism. Soc. Am., 63, 1433-1446.

Goda, K., 2012. Nonlinear response potential of mainshock-aftershock sequences from Japanese

earthquakes, Bull. Seismol. Soc. Am., 102, 2139-2156.

Henry, C. and Das, S., 2001. Aftershock zones of large shallow earthquakes: Fault dimensions,

aftershock area expansion, and scaling relations, Geophys. J. Int., 147, 272-293.

Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C. and Faccenna, C., 2011. Physical

characteristics of subduction interface type seismogenic zones revisited, Geochem. Geophys.

Geosyst., 12, no. Q01004, doi: 10.1029/2010GC003230.

Lay, T., Kanamori, H., Ammon, C.J., Hutko, A.R., Furlong, K. and Rivera, L., 2009. The 2006-2007 Kuril

Islands great earthquake sequence, J. Geophys. Res., 114, B113208, doi: 10.1029/2008JB006280.

Lolli, B. and Gasperini, P., 2006. Comparing different models of aftershock rate decay: The role of

the catalog, Tectonophysics, 423, 43-59.

Kagan, Y.Y. and Houston, H., 2006. Relation between mainshock rupture process and Omori’s law

for aftershock moment release rate, Geophys. J. Int., 163, 1039-1048.

Kisslinger, C., 1996. Aftershock and Fault Zone Properties, Advances in Geophysics, 38, 1-36.

Kisslinger, C.L. and Jones, L., 1991. Properties of aftershock sequences in southern California, J.

Geophys. Res., 96, 11, 947-958.

Marsan, D. and Lengliné, O., 2010. A new estimation of the decay of aftershock density with

distance to the mainshock, J. Geophys. Res., 115, B09302.

Mignan, A. and Woessner, J., 2012. Estimating the magnitude of completeness for earthquake catalogs,

Community Online Resource for Statistical Seismicity Analysis, doi: 10.5078/corssa-00180805.

Mogi, K., 1963. Some discussions on aftershocks, foreshocks and earthquake swarms the fracture

of a semi-infinite body caused by an inner stress origin and its relation to the earthquake

phenomena, Bull. Earthq. Res. Inst., 41, 615-658.

Mousavi-Bafrouei, S.H., Mirzaei, N. and Shabani, E., 2014. A declustered earthquake catalog for

the Iranian Plateau, Annals of Geophyisics, 57(6), So653, doi: 10.4401/ag-6395.

Narteau, C., Shebalin, P. and Hollschneider, M., 2008. The onset of the aftershock decay rate across

different stress regimes, Geophys. Res. Abstrs., 10, EGU2008-A-05624.

Okada, M., 1979. Statistical distribution of the difference in magnitude between the main shock and

its largest aftershock, J. Seism. Soc. Japan, 32, 462-476.

Omori, F., 1895. On the aftershocks of earthquakes, J. Coll. Sci. Imp. Univ., Tokyo, 7, 111-200.

Papazachos, B.C., 1974. On certain aftershock and foreshock parameters in the area of Greece, Ann.

Geofisica, 27, 497-515.

Purcaru, G., 1974. On the statistical interpretation of the Bath’s law and some relations in aftershock

statistics, Geol. Inst. Technic. And Ec. Study Geophys. Prosp., Bucharest, 10, 35-84.

Richter, C.F., 1958. Elementary Seismology, W.H. Freeman, San Francisco, 768 pp.

Sato, T., Hirotsuka, S. and Mori, J., 2012. Coulomb stress change for the normal fault aftershocks triggered near

the Japan Trench by the 2011 Mw9.0 Tohoku-Oki earthquake, Earth Planets space, 64, 1239-1243.

Scordilis, E.M., 2006. Empirical global relatins converting Ms and mb to moment magnitude, J.

Seismol., 10, 225-236, doi: 10.107/s10950-006-9012-4.

Scholz, C.H., 1968. The frequency-magnitude relation of microfracturing in rock and its relation to

earthquake, Bull. Seism. Soc. Am., 58, 399-415.

Scholz, C.H. and Campos, J., 2012. The seismic coupling of subduction zones revisited, J. Geophys.

Res., 117, no. B05310, doi: 10.1029/ 2011JB009003.

Schorlemmer, D., Wiemer, S. and Wyss, M., 2005. Variations in earthquake size distribution across

different stress regimes, Nature, 437, 539-542.

Shcherbakov, R., Turcotte, D.L. and Rundle, J.B., 2005. Aftershock statistics, Pure Appl. Geophys., 162, 1051-1076.

Shcherbakov, R., Turcotte, D.L. and Rundle, J.B., 2006. Scaling properties of the Parkfield

aftershock sequences, Null. Seismol. Soc. Am., 96, S376-S384.

Shcherbakov, R., Goda, K., Ivanian, A. and Atknson, G.M., 2013. Aftershock statistics of major

subduction earthquakes, Bull. Seismol. Soc. Am, 103(6), doi: 10.185/0120120337.

Tsapanos, T.M., 1990. Spatial distribution of the difference between the magnitudes of the main shock

and the largest aftershock in the circum Pacific belt, Bull. Seismol. Soc. A., 80(5), 1180-1189.

Tsapanos, T.M., 1995. The temporal distribution of aftershock sequences in the subduction zones of

the Pacific, Geophys. J. Int., 123, 633-636.

Tsapanos, T., Papazachos, C., Moutafi, Z., Gabrielides, J. and Spyrou, T., 1994. Properties of the

globally distributed aftershock sequences: Emphasis in the circum-Pacific belt, Proceedings

of the 7th Congress, Bull. Geol. Soc. Greece, l(XXX/5), 151-158, Thessaloniki, May 1994.

Utsu, T., 1961. A statistical study on the occurrence of aftershocks, Geophys. Mag. Tokyo, 30, 521-603.

Utsu, T., Ogata, Y. and Matsu’ura, R.S., 1995. The centenary of the Omori formula for a decay law

of aftershock activity, Journal of Physics of the Earth, 43, 1-33.

Wiemer, S. and Wyss, M., 2000. Minimum magnitude of completeness in earthquake catalogs: Examples

from Alaska, the Western United States, and Japan, Bull. Seismol. Soc. Am., 90, 859-869.

Wiemer, S., 2001. A software package to analyze seismicity: ZMAP, Seismological Research Letters, 72, 337-382.

Wells, D. and Coppersmith, K., 1994. New Empirical relationships among magnitude, rupture length,

rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84, 974-1002.

Woessner, J., Hauksson, E., Wiemer, S. and Neukomm, S., 2004. The 1997 Kagoshima (Japan) earthquake doublet:

A quantitative analysis of aftershock aate changes, Geophysical Research Letters, 31, Article ID: L03605.

Woessner, J. and Wiemer, S., 2005. Assessing the quality of earthquake catalogues: Estimating the

magnitude of completeness and its uncertainty, Bull. Seismol. Soc. Am., 95(2), 684-698.


  • There are currently no refbacks.

Copyright (c) 2017 E.M. Olasoglou, T.M. Tsapanos, E.E. Papadimitriou, G.N. Drakatos

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.