SOME PRELIMINARY RESULTS ON THE DISTRIBUTION OF AFTERSHOCK SEQUENCES IN JAPAN-KURIL ISLANDS AND KAMCHATKA


E.M. Olasoglou
T.M. Tsapanos
E.E. Papadimitriou
G.N. Drakatos
Résumé

study on the aftershock sequences distributed along the subductions in Japan and Kuril islands, as well as in Kamchatka is undertaken. Aftershock sequences, having a main shock magnitude Mw >7.0, during the time period 1973-2013 are taken into account. The data used (mainshocks, aftershocks and foreshocks if there are any) are restricted in shallow focal depths. A large earthquake in Japan Trench (11 March 2011 / Mw=9.0) occurred and for this reason the investigated area is of particular interest. Our study is concentrated on the spatial distribution of some parameters [Mc, a, b (Gutenberg-Richter distribution) and p, c, k (Omori’s law)] closely associated with the seismic sequences statistics.

Article Details
  • Rubrique
  • Geophysics and Seismology
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Davis, S.D. and Frohlich, C., 1991. Single-link cluster analysis of earthquake aftershocks: Decay
laws and regional variations, J. Geophys. Res., 96, 6335-6350.
Dieterich, J., 1986. A model for the nucleation of earthquake slip. In: Earthquake Source
Mechanism, Das, S., Boatwright, J. and Scholz, C., eds., Geophysical Monograph Series,
Am. Geoohys. Un., 37, 37-47, Washington, D.C., U.S.A.
Drakatos, G., 2000. Relative Seismic Quiescence before Large Aftershocks, Pure and Appl.
Geophysics, 157, 1407-1421.
Felzer, K.R., Abercrombie, R.E. and Ekstrom, G., 2004. A common origin of aftershocks,
foreshocks, and multiplets, Bull. Seismol. Soc. Am., 94, 88-98.
Frohlich, C., 1987. Aftershocks and temporal clustering of deep earthquakes, J. Geophys. Res., 92, 1394-13956.
Gibowitz, S.J., 1973. Stress drop and aftershocks, Bull. Seism. Soc. Am., 63, 1433-1446.
Goda, K., 2012. Nonlinear response potential of mainshock-aftershock sequences from Japanese
earthquakes, Bull. Seismol. Soc. Am., 102, 2139-2156.
Henry, C. and Das, S., 2001. Aftershock zones of large shallow earthquakes: Fault dimensions,
aftershock area expansion, and scaling relations, Geophys. J. Int., 147, 272-293.
Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C. and Faccenna, C., 2011. Physical
characteristics of subduction interface type seismogenic zones revisited, Geochem. Geophys.
Geosyst., 12, no. Q01004, doi: 10.1029/2010GC003230.
Lay, T., Kanamori, H., Ammon, C.J., Hutko, A.R., Furlong, K. and Rivera, L., 2009. The 2006-2007 Kuril
Islands great earthquake sequence, J. Geophys. Res., 114, B113208, doi: 10.1029/2008JB006280.
Lolli, B. and Gasperini, P., 2006. Comparing different models of aftershock rate decay: The role of
the catalog, Tectonophysics, 423, 43-59.
Kagan, Y.Y. and Houston, H., 2006. Relation between mainshock rupture process and Omori’s law
for aftershock moment release rate, Geophys. J. Int., 163, 1039-1048.
Kisslinger, C., 1996. Aftershock and Fault Zone Properties, Advances in Geophysics, 38, 1-36.
Kisslinger, C.L. and Jones, L., 1991. Properties of aftershock sequences in southern California, J.
Geophys. Res., 96, 11, 947-958.
Marsan, D. and Lengliné, O., 2010. A new estimation of the decay of aftershock density with
distance to the mainshock, J. Geophys. Res., 115, B09302.
Mignan, A. and Woessner, J., 2012. Estimating the magnitude of completeness for earthquake catalogs,
Community Online Resource for Statistical Seismicity Analysis, doi: 10.5078/corssa-00180805.
Mogi, K., 1963. Some discussions on aftershocks, foreshocks and earthquake swarms the fracture
of a semi-infinite body caused by an inner stress origin and its relation to the earthquake
phenomena, Bull. Earthq. Res. Inst., 41, 615-658.
Mousavi-Bafrouei, S.H., Mirzaei, N. and Shabani, E., 2014. A declustered earthquake catalog for
the Iranian Plateau, Annals of Geophyisics, 57(6), So653, doi: 10.4401/ag-6395.
Narteau, C., Shebalin, P. and Hollschneider, M., 2008. The onset of the aftershock decay rate across
different stress regimes, Geophys. Res. Abstrs., 10, EGU2008-A-05624.
Okada, M., 1979. Statistical distribution of the difference in magnitude between the main shock and
its largest aftershock, J. Seism. Soc. Japan, 32, 462-476.
Omori, F., 1895. On the aftershocks of earthquakes, J. Coll. Sci. Imp. Univ., Tokyo, 7, 111-200.
Papazachos, B.C., 1974. On certain aftershock and foreshock parameters in the area of Greece, Ann.
Geofisica, 27, 497-515.
Purcaru, G., 1974. On the statistical interpretation of the Bath’s law and some relations in aftershock
statistics, Geol. Inst. Technic. And Ec. Study Geophys. Prosp., Bucharest, 10, 35-84.
Richter, C.F., 1958. Elementary Seismology, W.H. Freeman, San Francisco, 768 pp.
Sato, T., Hirotsuka, S. and Mori, J., 2012. Coulomb stress change for the normal fault aftershocks triggered near
the Japan Trench by the 2011 Mw9.0 Tohoku-Oki earthquake, Earth Planets space, 64, 1239-1243.
Scordilis, E.M., 2006. Empirical global relatins converting Ms and mb to moment magnitude, J.
Seismol., 10, 225-236, doi: 10.107/s10950-006-9012-4.
Scholz, C.H., 1968. The frequency-magnitude relation of microfracturing in rock and its relation to
earthquake, Bull. Seism. Soc. Am., 58, 399-415.
Scholz, C.H. and Campos, J., 2012. The seismic coupling of subduction zones revisited, J. Geophys.
Res., 117, no. B05310, doi: 10.1029/ 2011JB009003.
Schorlemmer, D., Wiemer, S. and Wyss, M., 2005. Variations in earthquake size distribution across
different stress regimes, Nature, 437, 539-542.
Shcherbakov, R., Turcotte, D.L. and Rundle, J.B., 2005. Aftershock statistics, Pure Appl. Geophys., 162, 1051-1076.
Shcherbakov, R., Turcotte, D.L. and Rundle, J.B., 2006. Scaling properties of the Parkfield
aftershock sequences, Null. Seismol. Soc. Am., 96, S376-S384.
Shcherbakov, R., Goda, K., Ivanian, A. and Atknson, G.M., 2013. Aftershock statistics of major
subduction earthquakes, Bull. Seismol. Soc. Am, 103(6), doi: 10.185/0120120337.
Tsapanos, T.M., 1990. Spatial distribution of the difference between the magnitudes of the main shock
and the largest aftershock in the circum Pacific belt, Bull. Seismol. Soc. A., 80(5), 1180-1189.
Tsapanos, T.M., 1995. The temporal distribution of aftershock sequences in the subduction zones of
the Pacific, Geophys. J. Int., 123, 633-636.
Tsapanos, T., Papazachos, C., Moutafi, Z., Gabrielides, J. and Spyrou, T., 1994. Properties of the
globally distributed aftershock sequences: Emphasis in the circum-Pacific belt, Proceedings
of the 7th Congress, Bull. Geol. Soc. Greece, l(XXX/5), 151-158, Thessaloniki, May 1994.
Utsu, T., 1961. A statistical study on the occurrence of aftershocks, Geophys. Mag. Tokyo, 30, 521-603.
Utsu, T., Ogata, Y. and Matsu’ura, R.S., 1995. The centenary of the Omori formula for a decay law
of aftershock activity, Journal of Physics of the Earth, 43, 1-33.
Wiemer, S. and Wyss, M., 2000. Minimum magnitude of completeness in earthquake catalogs: Examples
from Alaska, the Western United States, and Japan, Bull. Seismol. Soc. Am., 90, 859-869.
Wiemer, S., 2001. A software package to analyze seismicity: ZMAP, Seismological Research Letters, 72, 337-382.
Wells, D. and Coppersmith, K., 1994. New Empirical relationships among magnitude, rupture length,
rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84, 974-1002.
Woessner, J., Hauksson, E., Wiemer, S. and Neukomm, S., 2004. The 1997 Kagoshima (Japan) earthquake doublet:
A quantitative analysis of aftershock aate changes, Geophysical Research Letters, 31, Article ID: L03605.
Woessner, J. and Wiemer, S., 2005. Assessing the quality of earthquake catalogues: Estimating the
magnitude of completeness and its uncertainty, Bull. Seismol. Soc. Am., 95(2), 684-698.
Articles les plus lus par le même auteur ou la même autrice