Published: Jul 28, 2016
Almopias subzone backarc basin Mantle impregnation
A. Rogkala
P. Petrounias
B. Tsikouras
K. Hatzipanagiotou

The Veria-Naousa ophiolitic complex represents a dismembered ophiolite unit, which is superimposed on a basement consisting of rocks belonging to the Pelagonian and Axios (Almopias subzone) isopic zones in northern Greece. Mantle peridotites are composed of variably serpentinised lherzolite and harzburgite intruded by a sparse network of pyroxenitic dykes. The serpentinised lherzolite and harzburgite contain Alspinels (Cr#=38.83-42.52 and Mg#=58.94-64.77), Cr-spinels (Cr#=43.37-64.92 and Mg#=49.20-58.66) and magnesiochromites (Cr#=53.93 57.13 and Mg#=55.73- 61.71). All of them display commonly richer-in-Cr cores rimmed by secondary ferrian chromite and magnetite. Whole-rock geochemicall compositions and primary spinel chemical composition of these peridotites are analogous to peridotites that formed in a suprasubduction zone. Ιt is supported that the Mantle peridotites of the VeriaNaousa ophiolitic complex formed in a back-arc basin

Article Details
  • Section
  • Petrology and Mineralogy
Download data is not yet available.
Banerjee, R., Ray, D. and Ishii, T., 2015. Mineral Chemistry and Alteration Characteristics of Spinel
in Serpentinised Peridotites from the Northern Central Indian Ridge, Jour. Geol. Soc. India,
, 41-51.
Barnes, S.J. and Roeder, P.L., 2001. The Range of Spinel Compositions in Terrestrial Mafic and
Ultramafic Rocks, J. Petrol., 42, 2279-2302.
Deer, W.A., Howie, R.A. and Zussman, S., 1992. The rock-forming minerals, Library of Congress
Cataloguing in Publication Data, 558-568.
Dick, H.J.B. and Bullen, T., 1984. Cr-spinel as a petrogenetic indicator in abyssal and alpine-type
peridotites and spatially associated lavas, Contrib, Mineral. Petrol., 86, 54-76.
Economou, M., 1983. A short note on the evolution of the Vermion ophiolite complex (Macedonia-
Greece), Ofioliti, 8, 333-338.
Economou-Eliopoulos, M., 2003. Apatite and Mn, Zn, Co-enriched chromite in Ni-laterites of northern
Greece and their genetic significance, Journal of Geochemical Exploration, 80, 41-54.
Farahat, E.S., Hoinkes, G. and Mogessie, A., 2011. Petrogenetic and geotectonic significance of
Neoproterozoic suprasubduction mantle as revealed by the Wizer ophiolite complex, Central
Eastern Desert, Egypt, Int. J. Earth Sci., 100, 1433-1450.
Gahlan, H.A. and Arai, S., 2007. Genesis of peculiarly zoned Co, Zn and Mn-rich chromian spinel in
serpentinite of Bou-Azzer ophiolite, Anti-Atlas, Morocco, Jour. Min. Petrol. Sci., 102, 69-85.
Ghosh, B., Morishita, T. and Bhatta, K., 2013. Significance of chromian spinels from the mantle sequence
of the Andaman Ophiolite, India: Paleogeodynamic implications, Lithos, 164-167, 86-96.
Kapsiotis, A., 2013. Origin of mantle peridotites from the Vourinos Ophiolite Complex, Greece, as deduced
from Cr-spinel morphological and chemical variations, Journal of Geosciences, 58, 217-231.
Karipi, S., Tsikouras, B. and Hatzipanagiotou, K., 2006. The petrogenesis and tectonic setting of
ultramafic rocks from Iti and Kallidromon Mountains, continental Central Greece: vestiges
of the Pindos ocean, Can. Mineral., 44, 267-287.
Karipi, S., Tsikouras, B., Hatzipanagiotou, K. and Grammatikopoulos, T.A., 2007. Petrogenetic
significance of spinel-group minerals from the ultramafic rocks of the Iti and Kallidromo
ophiolites (Central Greece), Lithos, 99, 136-149.
Khedr, M.Z. and Arai, S., 2011. Petrology and geochemistry of chromian spinel-bearing
serpentinites in the Hide Marginal Belt (Ise area, Japan): characteristics of their protoliths, J.
Miner. Petrol. Sci., 106, 225-260.
Maulana, A., Christy, A.C. and Ellis, D., 2015. Petrology, geochemistry and tectonic significance of
serpentinised ultramafic rocks from the South Arm of Sulawesi, Indonesia, Chem. Erde, 75, 73-87.
Mcdonough, W.F. and Sun, S.S., 1995. The composition of the Earth. Chem. Geol., 120, 223-253.
Mercier, J., Vergely, P. and Bebien, J., 1975. Les ophiolites helleniques “obductees” au Jurassique
superieur sont-elles les vestiges d’un ocean tethysien ou d’une mer marginale
perieuropeenne, C.R. Somm. Soc. Geol. France, 17, 108-112.
Michailidis, K.M., 1990. Zoned chromites with high Mn-contents in the Fe-Ni-Cr-laterite ore
deposits from the Edessa area in Northern Greece, Mineral. Deposita, 25, 190-197.
Niu, Y., 1997. Mantle melting and melt extraction processes beneath ocean ridges: evidence from
abyssal peridotites, J. Petrol., 38, 1047-1074.
Oh, C.W., Rajesh, V.J., Seo, J., Choi, S.G. and Lee, J.H., 2010. Spinel compositions and tectonic
relevance of the Bibong ultramafic bodies in the Hongseong collision belt, South Korea,
Lithos, 117, 198-208.
Singh, N.I., Devi, L.D. and Chanu, Th.Y., 2013. Petrological and Geochemical Study of
Serpentinised Peridotites from the Southern Part of Manipur Ophiolitic Complex, Northeast
India, Jour. Geol. Soc. India, 82, 121-132.
Tamura, A. and Arai, S., 2005. Unmixed spinel in chromitite from the Iwanai-dake peridotite
complex. Hokkaido, Japan: a reaction between peridotite and highly oxidized magma in the
mantle wedge, Am. Mineral., 90, 473-480.
Tsouras, G. and Economou-Eliopoulos, M., 2008. High PGE contents and extremely abundant PGEminerals
hosted in chromitites from the Veria ophiolite complex, Northern Greece, Ore Geol.
Rev., 33, 3-19.
Zhou, M.F., Robinson, P.T. and Bai, W.J., 1994. Formation of podiform chromitites by melt/rock
iteraction in the upper mantle, Mineralium Deposita, 29, 98-101.
Most read articles by the same author(s)