| More

Anelasticity beneath the Aegean inferred from Rayleigh wave attenuation

Views: 286 Downloads: 200
I. Kassaras, F. Louis, A. Magganas, K. Makropoulos, G. Kaviris
I. Kassaras, F. Louis, A. Magganas, K. Makropoulos, G. Kaviris


Anelasticity of the Earth crucially affects the propagation of seismic waves especially, in the long period range. However, even though the elastic properties of the Aegean deep lithosphère and upper mantle have been thoroughly investigated, their quantitative anelastic properties that influence the long period wavefield are still largely unknown. This work is towards contributing to the better knowledge of the deep structure of the Aegean by introducing experimental anelastic parameters via the study of long period Rayleigh waves attenuation. For this scope, fundamental mode attenuation coefficients (γ%) have been obtained for different two-station great-circle paths across the Aegean. The data used were provided by a broadband array installed in the area for 6 months in 1997. More than 1100 seismograms were analyzed in the 10-100 s range to obtain 17 sets of path average γR(T) functions. The attenuation coefficients are in the range 2.5*10~3 — 0.15 x 10' km' and correlate sufficiently with both experimental measurements in active tectonic regions elsewhere and synthetics generated with the use of an attenuation reference model inferred from other sources. By applying a stochastic uncoupled causal inversion method an average joint Qß'1 and shear velocity model representative of the under study area was obtained. Furthermore, path average JR(T) functions were combined in a continuous regionalization tomographic scheme to obtain local yR(T) and tomograms were constructed in the range 10-60 s. The most prominent feature in the tomograms is a high attenuation region in the central and north Aegean. This region is located south of the North Anatolian Trough and correlates well with a low shear velocity zone inferred from surface wave phase velocities. Moreover, it is associated with observed intense extensional deformation rates, mantle olivine anisotropy, recent volcanism and high heat flow.


Causal Inversion; Tomography; Continuous Regionalization

Full Text:



Al-Lazki, A.I., Sandvol, E., Seber, D., Barazangi, M., Turkelli N., and Mohamad. R., 2004. Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates, Geophys. J. Int., 158, 1024-1040.

Armijo, R., Meyer, B., King, G.C.P., Rigo, Α., and Papanastassiou, D., 1999. Westward propagation of the North Anatolian fault into the northern Aegean: timing and kinematics, Geology, 27, 267-270.

Bourova, E., Kassaras, I., Pedersen, H.A., Yanovskaya, T., Hatzfeld, D., and Kiratzi, Α., 2005. Constraints on absolute S velocities beneath the Aegean Sea from surface wave analysis, Geophys. J. Int, 160, 1006-1019.

Debayle, E., and Sambridge, M., 2004. Inversion of massive surface wave data sets: model construction and resolution assessments, J. Geophys. Res., 109, B02316, doi: 10.1029/2003 JB002652.

Eleftheriadis, G., Castorina, F., Soldâtes, T., and Masi, U., 2003. Geochemical and Sr-Nd isotopie evidence for the genesis of the Late Cainozoic Almopia volcanic rocks (Central Macedonia, Greece), Mineralogy and Petrology, 78, 21-36.

Fytikas, M., Innocenti, F., Manetti, P., Mazzuoli, P., Reccerillo, Α., and Villari, L., (eds J.E. Dixon, and A.H.F. Robertson), 1984. Tertiary to Quaternary evolution of volcanism in the Aegean region. The geological evolution of the eastern Mediterranean, Geol. Soc, London, Spec. Pubi., 17, 687-699.

Hatzfeld D., Karagianni, E., Kassaras, I., Kiratzi, Α., Louvari, E., Lyon-Caen, H., Makropoulos, K., Papadimitriou, P., Bock, G.. and Priestley, K., 2001. Shear wave anisotropy in the upper mantle beneath the Aegean related to internal deformation, J. Geophys. Res., 106, No 12, 30737-30753.

Hatzidimitriou, P., 1993. Attenuation of coda waves in Northern Greece, Pure Appi. Geophys., 140, 63-78.

Herrmann, R.B., 1973. Some aspects of band-pass filtering of surface waves, Bull. Seism. Soc. Am., 62, 129-139.

Herrmann, R.B., (ed. R.B. HERRMANN), 1991. Surface wave inversion program, Saint Louis University, Saint Louis, MO.

Innocenti, F., Manetti, P., Reccerillo, Α., and Poli, G., 1979. Inner arc volcanism in NW Aegean: geochemical and geochronological data, 7Y. Jb. Miner., Mn., 145-158.

Innocenti F., Agostini, S., Di Vincenzo, G., Doglioni, C, Manetti, P., Savascin, M.Y., and Tonarmi S., 2005. Neogene and Quaternary volcanism in Western Anatolia: Magma sources and geodynamic evolution, Marine Geology, 221, 397- 421.

Jongsma, D., 1974. Heat flow in the Aegean Sea, Geophys. J. R. Astron. Soc, 37, 337- 346.

Karagianni, E.E., Papazachos, C.B, Panagiotopoulos, D.G., Suhadolc, P., Vuan, Α., and Panza, G.F., 2005. Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves, Geophys. J. Int., 160, 127-143.

Kassaras, I., Makropoulos, K., Bourova, E., Pedersen, H., and Hatzfeld, D., 2005. Upper mantle structure of the Aegean derived from two-station phase velocities of fundamental mode Rayleigh waves. The South Aegean Active Volcanic Arc, Developments in Volcanology, Volume 7, Hardbound, ISBN 0-444-52046-5, Imprint ELSEVIER, 19-45.

Kovachev, S.A., Kuzin, LP., Shoda, O.Yu., 1991. Attenuation of S waves in the lithosphère of the Sea of Crete according to OBS observation, Phys. Earth Planet. Inter., 69, 101- 111.

Makris, J. and Vees, R., 1977. Crustal structure of the Aegean Sea and the Islands of Evia and Crete, Greece, obtained by refraction seismic measurements, J. Geophys. 42, 329-341.

Makris, J., Papoulia, J., Papanikolaou, D., and Stavrakakis, G., 2001. Thinned continental crust below northern Evoikos Gulf, central Greece, detected from deep seismic soundings, Tectonophysics, 341, 225-236.

Marone, F., van der Lee, S., and Giardini, D., 2004. Three-dimensional uppermantle S-velocity model for the Eurasia-Africa plate boundary region, Geophys. J. Int., 158, 109-130.

McClusky, S., Balassanian, S., Barka, Α., Demir, C, Ergintav, S., Georgiev., I., Gurkam, O., Hamburger, M., Hurst, K., Kahle, Η., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, Ο., Mahmoud, S., Mishin, Α., Nadariya, M., Ouzounis, Α., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, Α., Toksöz, M.N., and Veis, G., 2000. Global Positioning System constraints on plate motions and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res., 105, No B3, 5695-5719.

Montagner, J., 1986. Regional three-dimensional structures using long period surface waves, Ann. Geophys., B, 4, 283-294.

Papazachos, B.C., Comninakis, P.E., 1971. Geophysical and tectonic features of the Aegean arc, J. Geophys. Res., 76 (35), 8517-8533.

Papazachos, C, and Nolet, G., 1997. Ρ and S-wave velocity structure of the Hellenic area obtained by robust nonlinear inversion of travel times, J. Geoph. Res., 102, B4, 8349-8367.

Pe-Piper, G., and Piper, D.J.W., 2002. The igneous rocks of Greece, Gebruder Borntraegen, Berlin-Stuttgard, 573pp.

Polatidis, A, Kiratzi, A, Hatzidimitriou, P., and Margaris, B., 2003. Attenuation of shear-waves in the back-arc region of the Hellenic arc for frequencies from 0.6 to 16 Hz, Tectonophysics, 367,29-40.

Tiberi, C, Lyon-Caen, H., Hatzfeld, D., Achaeur, U., Karagianni, E., Kiratzi, Α., Louvari, E., Panagiotopoulos, D., Kassaras, I., Kaviris, G., Makropoulos, K., and Papadimitriou, P., 2000. Crustal and upper mantle structure beneath the Corinth rift from a teleseismic tomography study, J. Geophys. Res., 105, 28159-28171.

Tselentis, G.-A., 1993. Depth-dependent seismic attenuation in western Greece, Tectonophysics, 225:523-528.


  • There are currently no refbacks.

Copyright (c) 2018 I. Kassaras, F. Louis, A. Magganas, K. Makropoulos, G. Kaviris

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.