TOURMALINITE VEINS AND BRECCIAS FROM THE SYMVOLON-KAVALA PLUTON, NORTHERN GREECE: PETROGENETIC PRELIMINARY RESULTS


Published: Jul 28, 2016
Keywords:
Tourmaline hydrothermal fluid metasomatism cataclasite
S. Xydous
A. Magganas
P. Pomonis
A. Kokkinakis
Abstract

A previously undescribed tourmalinite rock consisting of tourmaline-rich veins and breccias occurs within the Lower Miocene Symvolon-Kavala granodiorite pluton, which intrudes the Lower Tectonic Unit of the Rhodope Metamorphic Province. Tourmaline, usually with crypto- to micro-crystalline grain size, is abundant within the matrix of breccias, also forming along with quartz and host rock clasts massive veins and injections in the fractures of the pluton. Field relations indicate that the tourmaline veins and breccias most likely formed in a brittle deformation regime, overprinting the previously developed foliation of the pluton. In addition, mineralogical and textural observations indicate that the precipitation of tourmaline was a result of cooling of B-rich hydrothermal fluids, implying for a possible magmatic-hydrothermal origin for the studied tourmalinite.

Article Details
  • Section
  • Petrology and Mineralogy
Downloads
Download data is not yet available.
References
Altherr, R., Topuz, G., Marschall, H., Zack, T. and Ludwig, T. 2004. Evolution of a tourmaline-beari
ng lawsonite eclogite from Elekdag area (Central Pontides, N Turkey): evidence for infiltratio
n of slab-derived B-rich fluids duringexhumation, Contrib. Mineral. Petrol., 148, 409-425.
Bonev, N., Burg, J.-P. and Ivanov, Z., 2006. Mesozoic-Tertiary structural evolution of an extension
al gneiss dome-The Kesebir-Kardamos dome, eastern Rhodope (Bulgaria-Greece), Int. J. E
arth Sci. (Geol Rundsch), 95(2), 318–340, doi: 10.1007/s00531-005-0025-y.
Burg, J.-P., Ivanov, Z., Ricou, L.-E., Dimov, D. and Klain, L., 1990. Implications of shear-sense
criteria for the tectonics evolution of the Central Rhodope massif, southern Bulgaria,
Geology, 18, 451-454, doi: 10.1130/0091-7613(1990)018.
Christofides, G., 1996. Tertiary magmatism in the Greek Rhodope Massif, northern Greece: Granitic pl
utons. In: Knezevic, V. and Krstic, B., eds., Terranes of Serbia: The Formation of the Geologic F
ramework of Serbia and the Adjacent Regions, University of Belgrade, Belgrade, 1, 55-160.
Christofides, G., Neiva, A., Soldatos, T. and Eleftheriadis, G., 1995. Petrology of the Kavala
plutonite (Eastern Macedonia, Greece), Proc. XV Congress CBGA, Athens, Bull. Geol. Soc.
Greece, Spec. Publ., 4(2), 489-494.
Demirel, S., Göncüoĝlu, C., Topuz, G. and Isik, V., 2009. Geology and chemical variations in Tourmaline
from the Quartz-Tourmaline Breccias within the Kerkenez Granite-Monzonite Massif, Central
Anatolian Crystalline Complex, Turkey, The Canadian Mineralogist, 47, 787-799.
Derham, J.M. and Feely, M., 1988. A K-feldspar breccia from Mo-Cu stockwork deposit in the
Galway granite, west of Ireland, J. Geol. Soc., London, 145, 661-667.
Dimadis, E. and Zachos, S., 1989. Geological and tectonic structure of the metamorphic basement
of the Greek Rhodope, Geologica Rhodopica, 1, 122-130.
Dini, A., Mazzarini, F., Musumeci, G. and Rocchi, S., 2008. Multiple hydrofracturing by boron-rich
fluids in the Late Miocene contact aureole of eastern Elba Island (Tuscany, Italy), Terra
Nova, 20, 318-326.
Dinter, D., MacFarlane, A., Hames, W., Isachsen, C., Bowring, S. and Royden, L., 1995. U-Pb and
Ar/39Ar geochronology of the Symvolon granodiorite: implications for the thermal and
structural evolution of the Rhodope metamorphic core complex, northeastern Greece,
Tectonics, 14, 886-908.
Dinter, D.Α. and Royden, L, 1993. Late Cenozoic extension in northeastem Greece: Strymon Valley
detachment and Rhodope metamorphic core complex, Geol., 21, 45-48.
Eleftheriadis, G. and Koroneos, A., 2003. Geochemistry and petrogenesis of post-collisonal Pangeon
granitoids in central Macedonia, northern Greece, Chemie der Erde, 63, 364-389.
Feely, M., Selby, D., Hunt, J. and Conliffe, J., 2010. Long-lived granite-related molybdenite
mineralization at Connemara, western Irish Caledonides, Geol. Mag., 147, 886-894.
Froitzheim, N., Jahn-Awe, S., Frei, D., Wainwright, A., Maas, R., Georgiev, N., Nagel, T.J. and
Pleuger, J., 2014. Age and composition of meta-ophiolite from the Rhodope Middle
Allochthon (Satovcha, Bulgaria): a test for the maximum-allochthony hypothesis of the
Hellenides, Tectonics, 32.
Harlov, D.E. and Austrheim, H., 2013. Metasomatism and the Chemical Transformation of Rock,
Lecture Notes in Earth System Sciences, doi: 10.l007/978-3-642-28394-9_l, Springer-
Verlag, Berlin, Heidelberg.
Henry, D.J. and Guidotti, C.V., 1985. Tourmaline as a petrogenetic indicator mineral: an example
from the staurolite- grade metapelites of NW Maine, American Mineralogist, 70, 1-15.
Jahn-Awe, S., Froitzheim, N., Nagel, T.J., Frei, D., Georgiev, N. and Pleuger, J., 2010. Structural and
geochronological evidence for Paleogene thrusting in the western Rhodopes, SW Bulgaria:
Elements for a new tectonic model of the Rhodope Metamorphic Province, Tectonics, 29.
Kokkinakis, A., 1977. Das Intrusivgebiet des Symvolon-Gebirges und yon Kavala in
Ostmakedonien, Griechenland. - Diss. Univ. Miinehen. - 255 + XIII S., 208 Abb., 29 Tab., 8
Kt., 1 B1, Miinehen.
Kokkinakis, A., 1980. Αltersbeziehungen zwischen Metamophοsen, mechanischen Deformationen
und Ιntrusionen am Südrand des Rhodοpe-Massivs (Makedοnien, Griechenland) Geol,
Rundschau, 69, 726-144.
Krenn, K., Bauer, C., Proyer, A., Klötzli, U. and Hoinkes, G., 2010. Tectonometamorphic evolution
of the Rhodope orogen, Tectonics, 29, TC4001.
Krohe, A. and Mposkos, E., 2002. Multiple generations of extensional detachments in the Rhodope
Mountains (N. Greece): evidence of episodic exhumation of high-P rocks. In: Blundell, D.J.,
Neubauer, G. and Von Quadt, A., eds., The Timing and Location of Major Ore Deposits in
an Evolving Orogen, Geological Society of London, Special Publication 204, 151-178.
Kyriakopoulos, K., Pezzinο, Α. and Del Moro, Α., 1989. Rb-Sr geochrological, petrological and structural
study of the KavaΙa plutonic complex (N. Greece), Bu1l. Geo1. Soc. Greece, 23, 545-560.
Lawless, J.V. and White, P.J., 1990. Ore-Related Breccias: A Revised genetic classification, with
particular reference to epithermal deposits, 12th New Zealand Geothermal Workshop.
Lawless, J.V., White, P.J., Bogie, I., Paterson, L.A. and Cartwright, A.J., 1998. Appendix 1: Genetic
Classification of Breccias, Ore Deposits and Magmatic-Hydrothermal Processes (Workshop
manual), Kingston Morrison consulting, 20 pp.
London, D., 2009. The origin of primary textures in granitic pegmatites, Canad. Mineral, 47, 697-724.
Marschall, HR, Ludwig, T, Altherr, R, Kalt, A. and Tonarini, S., 2006. Syros metasomatic tourmaline:
Evidence for very high-δ11B fluids in subduction zones, Journal of Petrology, 47, 1915-1942.
Müller, A. and Halls, C., 2005. Rutile - the tin-tungsten host in the intrusive tourmaline breccia at
Wheal Remfry, SW England. In: Jingwen, M and Bierlein, F.P., eds., Mineral Deposit
Research, Meeting the Global Challenge, 441-444.
Nagel, T.J., Schmidt, S., Janak, M., Froitzheim, N., Jahn-Awe, S. and Georgiev, N., 2011. The
exposed base of a collapsing wedge: The Nestos Shear Zone (Rhodope Metamorphic
Province, Greece), Tectonics, 30, TC4009, doi: 10.1029/2010TC002815.
Neiva, A., Christofides, G., Eleftheriadis, G. and Soldatos, T., 1996. Geochemistry of granitic rocks
and their minerals from the Kavala pluton, northern Greece, Chemie der Erde, 56, 117-142.
Pollard, P.J., Pichavant, M. and Charoy, B. 1987. Contrasting evolution of fluorine- and boron-rich
systems, Miner Depos, 22, 315-321.
Sillitoe, R.H., 1985, Ore-related breccias in volcanoplutonic arcs, EconomicGeology, 80, 1467-1514.
Skewes, M.A., Holmgren, C. and Stern, C.R., 2003. The Donoso copper-rich, tourmaline-bearing
breccia pipe in central Chile: petrologic, fluid inclusion and stable isotope evidence for an
origin from magmatic fluids, Miner Depos, 38, 2-21
Slack, J.F. and Trumbull, R.B., 2011. Tourmaline as a recorder of ore-forming processes, Elements,
, 321-326.
Trumbull, R.B. and Chaussidon, M., 1999. Chemical and boron isotopic composition of magmatic
and hydrothermal tourmalines from the Sinceni granite–pegmatite system in Swaziland,
Chem. Geol., 153, 125-137.
van Hinsberg, V.J., Henry, D.J. and Dutrow, B.L., 2011a. Tourmaline as a petrologic forensic
mineral: A unique recorder of its geologic past, Elements, 7, 327-332.
van Hinsberg, V.J., Henry, D.J. and Marschall, H.R., 2011b. Tourmaline: An ideal indicator of its
host environment, Canadian Mineralogist, 49, 1-16.
Williamson, B.J., Spratt, J., Adams, J.T., Tindle, A.G. and Stanley, C.T., 2000. Geochemical
constraints from zoned hydrothermal tourmalines on fluid evolution and Sn mineralization:
an example from fault breccias at Roche, SW England. J Petrol, 41, 1439-1453.
Most read articles by the same author(s)