PETROLOGICAL, MINERALOGICAL AND GEOCHEMICAL DATA FROM THE EOHELLENIC OPHIOLITIC NAPPE IN THE ISLAND OF SKYROS, GREECE


Published: Jul 28, 2016
Keywords:
Metasomatism metamorphism vesuvianite rodingite subduction
C. Karkalis
A. Magganas
P. Koutsovitis
Abstract

The ophiolite of Skyros mainly consists of serpentinized harzburgites, gabbroic rocks, dolerites, tholeiitic basaltic lavas, rodingites, as well as ophicalcites. This ophiolitic sequence comprises of an ophiolitic mélange of pre-Upper Cretaceous age belonging to the Eohellenic nappe, has been affected by low to moderate metamorphic and metasomatic processes. Their mineral chemistry as well as their whole rock chemistry suggests that these ophiolitic rocks are associated with supra-subduction related processes. The presence of vesuvianite crystals in rodingites, as well as the occurrence of relict spinels within serpentinitic rocks, further confirms this assumption. Geochemical and petrological comparison between Skyros ophiolitic rocks and similar rocks of the Eohellenic nappe in East Thessaly and other N. Sporades islands, reveal that they all share many petrogenetical features. These eastcentral Greece Eohellenic ophiolites, and the ophiolitic rocks of the upper tectonic unit of the Attico-Cycladic Zone may possibly form an elongated ophiolitic zone associated to the hanging wall of the North Cycladic Detachment System

Article Details
  • Section
  • Petrology and Mineralogy
Downloads
Download data is not yet available.
References
Baltatzis, E., 1984. A new occurrence of rodingite from Skiros island, Greece, N. Jb. Mineral. Mh.,
-322
Barrett, T.J. and MacLean, W.H., 1999. Volcanic sequences, lithogeochemistry, and hydrothermal
alteration in some bimodal volcanic-associated massive sulfide systems, in Volcanic
Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient
Environments, Society of Economic Geologists, Reviews in Economic Geology, 8, 101-131.
Beccaluva, L., Ohnestetter, D., Ohnestetter, M. and Paupy, A., 1984. Two magmatic series with
island arc affinities within the Vourinos ophiolites, Contrib. Mineral. Petrol., 85, 253-271.
Cabanis, B. and Lecolle, M., 1989. The La/10-Y/15-Nb/8 diagram; a tool for distinguishing volcanic
series and discovering crustal mixing and/or contamination, Comptes Rendus de l'Academie
des Sciences, 309, 2023-2029 (in French with an English abstract).
Campbell, I.H., 2001. Identification of ancient mantle plumes. In: Ernst, R.E. and Buchan, K.L.,
eds., Mantle plumes: their identification through time, Geological Society of America Special
Paper, 352, 5-21.
Coleman, R.G., 1967. Low-temperature reaction zones and alpine ultramafic rocks of California,
Oregon and Washington, U.S. Geological Survey Bulletin, 1247, 1-49.
Economou-Eliopoulos, M. and Eliopoulos, D.G., 1999. Significance of a Spatial Association of
High-Cr and High-Al Chromites for Their Genesis and Exploration, Extrait du Bulletin T.
CXIX de l’ Académie Serbe des Sciences et des Arts, Classe des Sciences mathématiques et
naturelles, Science naturelles, 39, 123-140.
Ferrière, J., Chanier, F. and Ditbanjong, P., 2012. The Hellenic ophiolites: eastward or westward
obduction of the Maliac Ocean, a discussion, International Journal of Earth Sciences, 101,
-1580.
Harder, H., Jacobshagen, V., Skala, W., Arafeh, M., Berndsen, J., Hofmann, A., Kusserow, H. and
Schedler, W., 1983. Geologische Entwicklung und Struktur der Insel Skyros, Nordsporaden,
Griechenland, Berliner geowissenschaftliche Abhandlungen, 48(A), 7-40.
Hatzipanagiotou, K., Tsikouras, B., Migiros, G., Gartzos, E. and Serelis, K., 2003. Origin of
rodingites in ultramafic rocks from Lesvos island (NE Aegean, Greece), Ofioliti, 28, 13-23.
Heinitz, W., and Richter-Heinitz, I., 1983. Geologische Unteersuchungen im Nordost-Teil der Insel
Skiathos (Griechenland), Berliner geowissenschaftliche Abhandlungen Berlin, 48(A), 41-63.
Jacobshagen, G. and Matarangas, D., 2004. Nappe structure of the North Sporades (Greece): on the
geological evolution of Alonissos island, Bull. Geol. Soc. Greece, 36/4, 1636-1642.
Jolivet, L., Lecomte, E., Huet, B., Denele, Y., Lacombe, O., Labrousse, L., Le Pourhiet, L. and
Mehlet, C., 2010. The North Cycladic Detachment System, Earth and Planetary Science
Letters, 289, 87-104.
Kamenetsky, V.S., Crawford, A.J. and Meffre, S., 2001. Factors controlling chemistry of magmatic
spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive
rocks, Journal of Petrology, 42(4), 655-671.
Katsikatsos, G.H., 1992. Geology of Greece, Patra, University Publications, 451 pp.
Koutsovitis, P., 2012. Gabbroic rocks in ophiolitic occurrences from East Othris, Greece: petroge-netic
processes and geotectonic environment implications, Mineralogy and Petrology, 104(3), 249-265.
Koutsovitis, P., Magganas, A., Pomonis, P. and Ntaflos, T., 2013. Subduction-related rodingites
from East Othris, Greece: Mineral reactions and physicochemical conditions of formation,
Lithos, 172-173, 139-157.
Li, X.P., Rahn, M. and Bucher, K., 2004. Metamorphic Processes in Rodingites of the Zermatt-Saas
Ophiolites, International Geology Review, 46, 28-51.
Li, X.P., Rahn, M. and Bucher, K., 2008. Eclogite facies metarodingites: phase relations in the
system SiO2–Al2O3–Fe2O3–FeO–MgO–CaO–CO2–H2O: an example from the Zermatt-
Saas ophiolite, Journal of metamorphic Geology, 26, 347-364.
Manning, C.E. and Bird, D.K., 1995. Porosity, permeability and basalt metamorphism. In: Schiffman,
P. and Day, H.W., eds., Geological Society of America Special Paper, 296, 123-140.
Matarangas, D., 1992. Geological investigations of Skopelos island (North Sporades, Greece),
Berichte des Forschungszentrums Jülich, 2684, 157.
Magganas, A., 2002. Constraints on the petrogenesis of Evros ophiolite extrusives, NE Greece,
Lithos, 65, 165-182.
Magganas, A. and Koutsovitis, P., 2015. Composition, melting and evolution of the upper mantle
beneath the Jurassic Pindos ocean inferred by ophiolitic ultramafic rocks in East Othris,
Greece, International Journal of Earth Sciences, 104, 1185-1207.
Migiros, G., 1986. The ophiolites of East Thessaly, IGME Geol. & Geoph. Special Issue, Athens,
-268.
Migiros, G. and Economou, G.S., 1988. Chromites in the ultrabasic rocks East Thessaly Complex
(Central Greece), Ofioliti, 13, 127-136.
Papanikolaou, D., 2009. Timing of tectonic emplacement of the ophiolites and terrane
paleogeography in the Hellenides, Lithos, 108, 262-280.
Pearce, J.A. and Parkinson, I.J., 1993. Trace element models for mantle melting: application to
volcanic arc petrogenesis. In: Pichard, H.M., Alabaster, T., Harris, N.B.W., Neary, N.B.W.,
eds., Magmatic Processes and Plate Tectonics, Geol. Soc. London Sp. Pub., 76, 373-403.
Pearce, J.A., 1996. A user's guide to basalt discrimination diagrams. In: Wyman, D.A., ed., Trace
element geochemistry of volcanic rocks: applications for massive sultide exploration,
Geological Association of Canada, Short Course Notes, 12, 79-113.
Pearce, J.A. and Peate, D.W., 1995. Tectonic implications of the composition of volcanic ARC
magmas, Annual Review of Earth and Planetary Sciences, 23, 251-285.
Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite
classification and the search for Archean oceanic crust, Lithos, 100, 14-48.
Pelletier, L., Vils, F., Kalt, A. and Gméling, K., 2008. Li, B and Be Contents of Harzburgites from
the Dramala Complex (Pindos Ophiolite, Greece): Evidence for a MOR-type Mantle in a
Supra-subduction Zone Environment, Journal of Petrology, 49(11), 2043-2080.
Pe-Piper, G., Matarangas, D. and Jacobshagen, V., 1996. The Mesozoic metavolcanics rocks of
Alonnisos and Kyra Panagia islands, Sporades, Greece, N. Jb. Miner. Mh, 6, 251-263.
Pe-Piper, G. and Piper, D.J.W., 2002. "The Igneous rocks of Greece: the anatomy of an orogen",
Gebrüder Borntraeger, Stuttgart, 573 pp.
Pomonis, P., Tsikouras, B. and Hatzipanagiotou, K., 2007. Petrogenetic evolution of the Koziakas
ophiolite complex (W. Thessaly, Greece), Mineralogy and Petrology, 89, 77-111.
Robertson, A.H.F., 2004. Development of concepts concerning the genesis and emplacement of Tethyan
ophiolites in the Eastern Mediterranean and Oman regions, Earth-Science Reviews, 6, 331-387.
Saccani, E., Photiades, A. and Beccaluva, L., 2008. Petrogenesis and tectonic significance of
Jurassic IAT magma-types in the Hellenide ophiolites as deduced from the Rhodiani
ophiolites (Pelagonian zone, Greece), Lithos, 104, 71-84.
Stampfli, G.M., Vavassis, I., de Bono, A., Rosselet, F., Matti, B. and Bellini, M., 2003. Remnants
of the Palaeotethys oceanic suture-zone in the western Tethyan area, Bolletino della Società
Geologica Italiana, Volume speciale, 1-24.
Tsikouras, B., Karipi, S., Rigopoulos, I., Perraki, M., Pomonis, P. and Hatzipanagiotou, K., 2009.
Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite
complex of Othrys (Central Greece), Lithos, 113, 540-554.
Whattam, S.A. and Stern, R.J., 2011. The 'subduction initiation rule': A key for linking ophiolites,
intra-oceanic forearcs and subduction initiation, Contributions to Mineralogy and Petrology,
, 1031-1045.
Winchester, J.A. and Floyd, P.A., 1977. Geochemical discrimination of different magma series and
their differentiation products using immobile elements, Chem. Geol., 20, 325-343.
Most read articles by the same author(s)