Investigating the capability of Sentinel-2 and Worldview-3 VNIR satellite data to detect mineralized zones at an igneous intrusion in the Koutala islet (Lavreotiki, Greece) using laboratory mineralogical analysis, reflectance spectroscopy and spectral indices


Published: Jan 13, 2023
Keywords:
granitoid intrusion Fe-Mn mineralization remote sensing reflectance spectroscopy spectral index Lavrion
Olga Sykioti
https://orcid.org/0000-0003-1301-6450
Athanassios Ganas
https://orcid.org/0000-0002-1937-3283
Charalampos Vasilatos
https://orcid.org/0000-0001-6162-3402
Zacharenia Kypritidou
https://orcid.org/0000-0003-0095-5563
Abstract

During the last decades, the rapid progress of remote sensing data processing for their utilization in detecting locations of possible sites linked to hydrothermal alteration and ores has gained increasing attention due to significant time and cost savings. In this study, we present the findings of a joint remote sensing and laboratory examination of a mineralization zone induced by a granitoid intrusion onshore the islet of “Koutala”, in Lavreotiki, central Greece. Our objective is to investigate the potential of Sentinel-2 and WorldView-3 VNIR satellite data to detect and map oxidized ore zones and alteration minerals that are detected from laboratory analysis of samples and could be linked to Fe-Mn mineralization. Two approaches are followed, namely reflectance spectroscopy and spectral indices. In reflectance spectroscopy, the spectral signatures of all minerals detected in the study area are retrieved from spectral libraries. The signatures are resampled to Sentinel-2 and to WorldView-3 VNIR spectral bands. Continuum-removal is then applied and the diagnostic absorption features of each mineral are detected for each spectral band configuration. The dataset with the best spectral configuration for mineral detection is then used for the production of mineral maps using the corresponding satellite image. The second approach involves the calculation of spectral indices, namely ferric, ferrous iron and hydroxyl-bearing alteration, on reflectance spectra. The ferric iron index is applied to both satellite datasets while the two other indices require the use of SWIR bands and therefore, they can be only calculated on Sentinel-2 data. All results show that laboratory and satellite data analyses results are consistent and complementary. WorldView-3 VNIR data seem to be sensitive only to the ferric and manganese phase. Sentinel-2 data seem to be capable to detect and map all alteration minerals that are potentially linked to Fe-Mn ore, including both ferric and ferrous phases. The mineral absorption and spectral indices maps show that in the investigated area, there is significant mineralization related to the granitoid intrusion. Hydrothermal alteration is observed on the entire surface of the islet but it seems to be stronger at the eastern part of the islet where the granitoid/schist contact is located. It is the first time that (i) minerals linked to a potential Fe-Mn ore are detected on the islet and (b) the corresponding alteration mineral maps are produced from satellite data, revealing their spatial distribution and providing indirect estimations of the degree of their presence.

Article Details
  • Section
  • Remote Sensing
Downloads
Download data is not yet available.
Author Biographies
Olga Sykioti, National Observatory of Athens

Dr. Olga Sykioti

Senior Researcher

Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS/NOA)

National Observatory of Athens

Athanassios Ganas, National Observatory of Athens

Dr. Athanasios Ganas

Research Director

Institute of Geodynamics

National Observatory of Atehns

Charalampos Vasilatos, National and Kapodistrian Universtity of Athens

Charalampos Vasilatos

Assistant Professor

Department of Geology and Geoenvironment, School of Science

National and Kapodistrian University of Athens

Zacharenia Kypritidou, National and Kapodistrian Universtity of Athens

Dr. Zacharenia Kypritidou

Laboratory and Teaching Staff

Department of Geology and Geoenvironment, School of Science

National and Kapodistrian University of Athens

References
Abrams, M., Brown, D., Lepley, L., Sadowski, R., 1983. Remote sensing of porphyry copper deposits in Southern Arizona. Economic Geology, 78, 4, 591–604. https://doi.org/10.2113/gsecongeo.78.4.591 DOI: https://doi.org/10.2113/gsecongeo.78.4.591
Abrams, M., Hook, S.J., 1995. Simulated ASTER Data for Geological Studies. IEEE Transaction on Geo-science and Remote Sensing, 33, 692-699. https://doi.org/10.1109/36.387584 DOI: https://doi.org/10.1109/36.387584
Abrams, M., Tsu, H., Hulley, G., Iwao, K., Pieri, D., Cudahy, T., Kargel, J., 2015. The advanced spaceborne thermal emission and reflection radiometer (ASTER) after fifteen years: Review of global products. International Journal of Applied Earth Observation and Geoinformation, 38, 292–301. https://doi.org/10.1016/j.jag.2015.01.013 DOI: https://doi.org/10.1016/j.jag.2015.01.013
Abubakar, A.J.A., Hashim, M., Pour, A.B., 2019. Identification of hydrothermal alteration minerals associated with geothermal system using ASTER and Hyperion satellite data: A case study from Yankari Park, NE Nigeria. Geocarto International, 34, 597–625, https://doi.org/10.1080/10106049.2017.1421716 DOI: https://doi.org/10.1080/10106049.2017.1421716
Adiri, Z., Lhissou, R., El Harti, A., Jellouli, A., & Chakouri, M., 2020. Recent advances in the use of public domain satellite imagery for mineral exploration: A review of Landsat-8 and Sentinel-2 applications. Ore Geology Reviews, 117, 103332. https://doi.org/10.1016/j.oregeorev.2020.103332 DOI: https://doi.org/10.1016/j.oregeorev.2020.103332
Altherr, R., Kreuzer, H., Wendt, I., Lenz, H., Wagner, G.A. Keller, J., Harre, W., Hohndorf, A., 1982. A late Oligocene/early Miocene high temperature belt in the Attic-Cycladic crystalline complex (SE Pelagonian, Greece). Geol. Jahrb., E23, 97 – 164.
Anifadi, A., Parcharidis, I., Sykioti, O., 2016. Hydrothermal alteration zones detection in Limnos Island, through the application of Remote Sensing. Proceedings of the 14th International Conference of the Geological Society of Greece, Bulletin of the Geological Society of Greece, 50(3). https://doi.org/10.12681/bgsg.11879 DOI: https://doi.org/10.12681/bgsg.11879
Anifadi, A., Sykioti, O., Koutroumbas, K., Vassilakis, E., 2022. A Novel Spectral Index for Identifying Ferronickel (Fe–Ni) Laterites from Sentinel 2 Satellite Data, Natural Resources Research, 31, 198, https://doi.org/10.1007/s11053-022-10055-6 DOI: https://doi.org/10.1007/s11053-022-10055-6
Askari. G., Pour, A.B., Pradhan, B., Sarfi, M., Nazemjehad, F., 2018. Band Ratios Matrix Transformation (BRMT): A Sedimentary Lithology Mapping Approach Using ASTER Satellite Sensor. Sensors, 18(10), 3213. https://doi.org/10.3390/s18103213 DOI: https://doi.org/10.3390/s18103213
Berger, A., Schneider, D., Grasemann, B., Stockli, D., 2012. Footwall mineralization during Late Miocene extension along the West Cycladic Detachment System, Lavrion, Greece. Terra Nova, 25(3), 181-191, https://doi.org/10.1111/ter.12016 DOI: https://doi.org/10.1111/ter.12016
Bishop, JL, Murad E., 2005. The visible and infrared spectral properties of jarosite and alunite. American Mineralogist, 90, 1100–1107. https://doi.org/10.2138/am.2005.1700 DOI: https://doi.org/10.2138/am.2005.1700
Bonsall, T.A., Spry, P.G., Voudouris, P., St. Seymour, K., Tombros, S., Melfos, V., 2007. Fluid inclusion and stable isotope characteristics of carbonate replacement Pb-Zn-Ag deposits in the Lavrion district, Greece. In Mineral exploration and research: Digging deeper, Andrews, C.J., et al., Eds. Irish Association for Economic Geology: Dublin, Ireland, pp. 283-286.
Burns, R. G., 1993. Mineralogical applications of crystal field theory. 2nd Ed. Cambridge University Press. https://doi.org/10.1017/CBO9780511524899 DOI: https://doi.org/10.1017/CBO9780511524899
Clark, R. N., Roush, T. L., 1984. Reflectance spectroscopy—quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 6329–6340. https://doi.org/10.1029/JB089iB07p06329 DOI: https://doi.org/10.1029/JB089iB07p06329
Clark, R., 1999. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, In Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 3rd Ed., Rencz, A.M., Ed. Wiley: New York, NY, USA, Ch. 1; Vol. 3, 728p.
Cloutis, E. A., 1996. Review article hyperspectral geological remote sensing: Evaluation of analytical techniques. International Journal of Remote Sensing, 17, 12, 2215–2242. https://doi.org/10.1080/01431169608948770 DOI: https://doi.org/10.1080/01431169608948770
Cudahy, T., Hewson, R., 2002. ASTER geological case histories: porphyry-skarnepithermal, iron oxide Cu-Au and Broken hill Pb-Zn-Ag. Annual General Meeting of the Geological Remote Sensing Group ‘ASTER Unveiled’, Burlington House, Piccadilly, London, UK.
DigitalGlobe Inc., 2017. Data sheet for WorldView 3 available online in
Economou, M., Skounakis, S., Papathanasiou, C., 1981. Magnetite deposits of skarn type from the Plaka area of Laurium, Greece. Chemie der Erde, 40, 241−252, ISSN: 0009-2819.
El Kati, I., Nakhcha, C., El Bakhchouch, O., Tabyaoui, H., 2018. Application of ASTER and Sentinel-2A Images for geological mapping in arid regions: The Safsafate Area in the Neogen Guercif basin, Northern Morocco, International Journal of Advances in Remote Sensing GIS, 7, 2782–2792. https://doi.org/10.23953/cloud.ijarsg.374 DOI: https://doi.org/10.23953/cloud.ijarsg.374
Farmer, V.C., 1974. The Infrared Spectra of Minerals. Mineralogical Society, London, UK, 539p. DOI: https://doi.org/10.1180/mono-4
Ferrier, G., White, K., Griffiths, G., Bryant, R., Stefouli, M., 2010. The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset. International Journal of Remote Sensing, 23, 2, 341-356. https://doi.org/10.1080/01431160010003857 DOI: https://doi.org/10.1080/01431160010003857
Ferrier, G.; Naden, J.; Ganas, A.; Kemp, S.; Pope, R. 2016. Identification of Multi-Style Hydrothermal Alteration Using Integrated Compositional and Topographic Remote Sensing Datasets. Geosciences, 6 (3), 36 doi:10.3390/geosciences6030036. http://www.mdpi.com/2076-3263/6/3/36/html DOI: https://doi.org/10.3390/geosciences6030036
Ferrier, G., Pope, R., Ganas, A., 2019. Prospectivity mapping for high sulfidation epithermal porphyry deposits using an integrated compositional and topographic remote sensing dataset. Ore Geology Reviews, 107, 353-363. https://doi.org/10.1016/j.oregeorev.2019.02.029 DOI: https://doi.org/10.1016/j.oregeorev.2019.02.029
Gad, S., Kusky, T., 2007. ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, 11, 326–335. https://doi.org/10.1016/j.gr.2006.02.010 DOI: https://doi.org/10.1016/j.gr.2006.02.010
Ganas A., and Ferrier, G., 2002. Mapping epithermal gold in Milos using DAIS Hyperspectral data. ΟΡΥΚΤΟΣ ΠΛΟΥΤΟΣ (in Greek with English Summary), Mineral Wealth, 122, 37-46.
Ge, W., Cheng, Q., Tang, Y., Jing, L., Gao, C., 2018(a). Lithological classification using Sentinel-2A data in the Shibanjing ophiolite complex in Inner Mongolia, China. Remote Sensing, 10, 638. https://doi.org/10.3390/rs10040638 DOI: https://doi.org/10.3390/rs10040638
Ge, W., Cheng, Q., Jing, L., Armenakis, C., Ding, H., 2018(b). Lithological discrimination using ASTER and Sentinel-2A in the Shibanjing ophiolite complex of Beishan orogenic in Inner Mongolia, China. Advanced Space Research, 62, 1702–1716. https://doi.org/10.1016/j.asr.2018.06.036 DOI: https://doi.org/10.1016/j.asr.2018.06.036
Goetz, A. F. H., Rowan, L. C., 1981. Geologic remote-sensing. Science, 211, 4484, 781–791. https://doi.org/10.1126/science.211.4484.781 DOI: https://doi.org/10.1126/science.211.4484.781
Henrich, V., Götze, C., Jung, A., Sandow, C., Thürkow, D., Glaesser, C., 2009. Development of an online indices database: Motivation, concept and implementation. 6th EARSeL Imaging Spectroscopy SIG Workshop Innovative Tool for Scientific and Commercial Environment Applications, Tel Aviv, Israel.
Hewson, R.D., Cudahy, T.J., Huntington, J.F., 2001. Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data. Geoscience and Remote Sensing Symposium, IGARSS '01. IEEE 2001 International, 2, 724-726. https://doi.org/10.1109/igarss.2001.976615 DOI: https://doi.org/10.1109/IGARSS.2001.976615
Hosseinjani, M., Tangestani, M.H., 2011. Mapping alteration minerals using sub-pixel unmixing of ASTER data in the Sarduiyeh area, SE Kerman, Iran. International Journal of Digital Earth, 4, 487–504. https://doi.org/10.1080/17538947.2010.550937 DOI: https://doi.org/10.1080/17538947.2010.550937
Hu, B., Xu, Y., Wan, B., Wu, X., Yi, G., 2018. Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan. Ore Geology Reviews, 101, 384–397. https://doi.org/10.1016/j.oregeorev.2018.07.017 DOI: https://doi.org/10.1016/j.oregeorev.2018.07.017
Hunt, G. R., 1977. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42, 3, 501–513. https://doi.org/10.1190/1.1440721 DOI: https://doi.org/10.1190/1.1440721
Hunt, G. R., Ashley, R. P., 1979. Spectra of altered rocks in the visible and near infrared. Economic Geology, 74, 7, 1613–1629. https://doi.org/10.2113/gsecongeo.74.7.1613 DOI: https://doi.org/10.2113/gsecongeo.74.7.1613
Jackson, R. D., 1983. Spectral Indices in N-Space. Remote Sensing of Environment, 13, 5, 409–421. https://doi.org/10.1016/0034-4257(83)90010-X DOI: https://doi.org/10.1016/0034-4257(83)90010-X
Kalinowski, A., Oliver, S., 2004. ASTER Mineral Index Processing Manual. In: Remote Sensing Applications Geoscience Australia. (available online in https://www.ga.gov.au/webtemp/image_cache/GA7833.pdf).
Kruse, F.A., 2010. Mineral mapping using spectroscopy: from field measurements to airborne and satellite-based spectrometry. ASARS Symposium Boulder, Colorado, USA, p. 1-15.
Kruse, F.A., 2012. Mapping surface mineralogy using imaging spectrometry. Geomorphology, 137, 1, 41-56. https://doi.org/10.1016/j.geomorph.2010.09.032 DOI: https://doi.org/10.1016/j.geomorph.2010.09.032
Kruse, F.A., 1988. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada, and California. Remote Sensing of Environment, 24, 1, 31–51. https://doi.org/10.1016/0034-4257(88)90004-1 DOI: https://doi.org/10.1016/0034-4257(88)90004-1
Lanfranchi, R.A., Cerqueira, Pereira Cruz, S., Rocha, F., 2021. Application of remote sensing and reflectance spectroscopy to explore iron-enriched domains in the north region of the intracontinental sector of the Aracuai West Congo Orogen. Ore Geology Reviews, 128, 103916. https://doi.org/10.1016/j.oregeorev.2020.103916 DOI: https://doi.org/10.1016/j.oregeorev.2020.103916
Liu, W., Baret, F., Xinfa, G., Qingxi, T., Lanfen, Z., Bing, Z., 2002. Relating soil surface moisture to reflectance. Remote Sensing of
Marinos, G., Petrascheck, W.E., 1956. Laurium: Geological and geophysical research. Greece. Institute for Geology and Subsurface Research, 4, 1–246.
Mars, J.C., Rowan, L.C., 2010. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment, 114, 2011–2025. https://doi.org/10.1016/j.rse.2010.04.008 DOI: https://doi.org/10.1016/j.rse.2010.04.008
Mekik, C, Arslanoglu, M., 2009. Investigation on Accuracies of Real Time Kinematic GPS for GIS Applications. Remote Sensing, 1, 1, 22-35. https://doi.org/10.3390/rs1010022 DOI: https://doi.org/10.3390/rs1010022
Mielke, C., Bösche, N.K., Rogass, C., Segl, K., Gauert, C., Kaufmann, H., 2014. Potential applications of the Sentinel-2 multispectral sensor and the EnMap hyperspectral sensor in mineral exploration. Earsel Eproceedings, 13, 93–102. https://doi.org/10.12760/01-2014-2-07
Nikolakopoulos, G.K., Vaiopoulos, D.A., Skianis, G.A., 2007. A preliminary approach on the use of satellite hyperspectral data for geological mapping. Proceedings of the 11th International Congress of the Geological Society of Greece, Bulletin of the Geological Society of Greece, 40, 1998-2007. https://doi.org/10.12681/bgsg.17251 DOI: https://doi.org/10.12681/bgsg.17251
Nikolakopoulos, K., Gioti, E., Skianis, G., Vaiopoulos, D., 2010. Ameliorating the spatial resolution of Hyperion hyperspectral data. The case of Antiparos island. Proceedings of the 12th International Congress of the Geological Society of Greece, Bulletin of the Geological Society of Greece, 43(3), 1627-1636. https://doi.org/10.12681/bgsg.11337 DOI: https://doi.org/10.12681/bgsg.11337
Nikolakopoulos, G.K., Lampropoulou, P., Papoulis, D., Rogkala, A., Giannakopoulou, P.P., Petrounias, P., 2018. Combined use of Remote Sensing Data, Mineralogical Analyses, Microstructure Studies, and Geographic Information System for Geological Mapping of Antiparos Island (Greece). Geosciences, 8(3), 96. https://doi.org/10.3390/geosciences8030096 DOI: https://doi.org/10.3390/geosciences8030096
Ninomiya Y, Fu, B., 2019. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geology Reviews, 108, 54–72. https://doi.org/10.1016/j.oregeorev.2018.03.012 DOI: https://doi.org/10.1016/j.oregeorev.2018.03.012
Oikonomidis, D., Vavelidis, Melfos, V., Artashova, M., 2016. Searching for ancient gold mines in Filippoi area, Macedonia, Greece, using Worldview-2 satellite imagery. Geocarto International, 87-96. http://dx.doi.org/10.1080/10106049.2015.1128487 DOI: https://doi.org/10.1080/10106049.2015.1128487
Papanikolaou, D.J., Syskakis, D., 1991. Geometry of acid intrusives in Plaka, Laurium and relation between magmatism and deformation. Bulletin of the Geological Society of Greece, 25, 355-368.
Park, H., Choi, J., 2021. Mineral Detection Using Sharpened VNIR and SWIR Bands of Worldview-3 Satellite Imagery. Sustainability, 13, 5518. https://doi.org/10.3390/su13105518 DOI: https://doi.org/10.3390/su13105518
Pe-Piper, G., Piper, D., 2002. The igneous rocks of Greece: anatomy of an orogen, 1st ed.; Beiträge zur Regionalen Geologie der Erde: Stuttgart, Germany, 588 p., ISBN 978-3-443-11030-7.
Photiades, A., Carras, N., 2001. Stratigraphy and geological structure of the Lavrion area (Attica, Greece). Bulletin of the Geological Society of Greece, 34, 103-109. DOI: https://doi.org/10.12681/bgsg.16949
Pour, A.B., Hashim, M.; Marghany, M., 2011. Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. International. Journal of Physical Sciences, 6, 917–929. https://doi.org/10.5897/IJPS10.510
Pour, A.B., Hashim, M., Hong, J.K., Park, Y., 2019. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula. Ore Geology Reviews, 108, 112–133, https://doi.org/10.1016/j.oregeorev.2017.07.018 DOI: https://doi.org/10.1016/j.oregeorev.2017.07.018
Purwadi, I., van der Werff, H., Lievens, C., 2020. Targeting rare earth element bearing mine tailings on Bangka Island, Indonesia, with Sentinel-2 MSI. International Journal of Applied Earth Observation and Geoinformation, 88, 102055. https://doi.org/10.1016/j.jag.2020.102055 DOI: https://doi.org/10.1016/j.jag.2020.102055
Rajendran, S., Thirunavukkarasu, A., Balamurugan, G., Shankar, K., 2011. Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data. Journal of Asian Earth Sciences, 41, 99–106. https://doi.org/10.1016/j.jseaes.2011.01.004 DOI: https://doi.org/10.1016/j.jseaes.2011.01.004
Rajendran, S., 2017. Characterization of ASTER spectral bands for mapping alteration zones of volcanic massive sulphide deposits. Ore Geology Reviews, 88, 317–335. https://doi.org/10.1016/j.oregeorev.2017.04.016 DOI: https://doi.org/10.1016/j.oregeorev.2017.04.016
Rowan, L. C., Mars, J. C., 2003. Lithologic mapping in the mountain pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366. https://doi.org/10.1016/S0034-4257(02)00127-X DOI: https://doi.org/10.1016/S0034-4257(02)00127-X
Rowan, L.C., Schmidt, R.G., Mars, J.C., 2016. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data, Remote Sensing of Environment, 104, 1, 74-87. https://doi.org/10.1016/j.rse.2006.05.014 DOI: https://doi.org/10.1016/j.rse.2006.05.014
Sabins, F. F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183. https://doi.org/10.1016/S0169-1368(99)00007-4 DOI: https://doi.org/10.1016/S0169-1368(99)00007-4
Salehi, T., H. Tangestani, M., 2020. Evaluation of WorldView-3 VNIR and SWIR Data for Hydrothermal Alteration Mapping for Mineral Exploration: Case Study from Northeastern Isfahan, Iran. Natural Resources Research, 29, 3479–3503. https://doi.org/10.1007/s11053-020-09703-6 DOI: https://doi.org/10.1007/s11053-020-09703-6
Scheffer, C., Vanderhaeghe, O., Lanari, P., Tarantola, A., Ponthus, L., Photiades, A., France, L., 2016. Syn- to post-orogenic exhumation of metamorphic nappes: Structure and thermobarometry of the western Attic-Cycladic metamorphic complex (Lavrion, Greece). Journal of Geodynamics, 96, 174 – 193. https://doi.org/10.1016/j.jog.2015.08.005 DOI: https://doi.org/10.1016/j.jog.2015.08.005
Shim, K., Yu, J., Wang, L., Lee, S., Koh. S-M., Lee, B.H., 2021. Content Controlled Spectral Indices for Detection of Hydrothermal Alteration Minerals Based on Machine Learning and Lasso-Logistic Regression Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7435-7447. https://doi.org/10.1109/JSTARS.2021.3095926 DOI: https://doi.org/10.1109/JSTARS.2021.3095926
Shuai, S., Zhang, Z., Lv, X. et al., 2022. Assessment of new spectral indices and multi-seasonal ASTER data for gypsum mapping. Carbonates Evaporites, 37, 34. https://doi.org/10.1007/s13146-022-00775-4 DOI: https://doi.org/10.1007/s13146-022-00775-4
Skarpelis, N., 2002. Geodynamics and evolution of the Miocene mineralization in the Cycladic-Pelagonian Belt, Hellenides. Bulletin of the Geological Society of Greece, 34, 2191-2209. DOI: https://doi.org/10.12681/bgsg.16862
Skarpelis, N., Tsikouras, B., Pe-Piper, G., 2007. The Miocene igneous rocks in the Basal unit of Lavrion (SE Attica, Greece): Petrology and geodynamic implications. Geological Magazine, 145, 1–15. https://doi.org/10.1017/S0016756807003949 DOI: https://doi.org/10.1017/S0016756807003949
Skarpelis, N., Argyraki, A., 2008. Geology and origin of supergene ore at the Lavrion Pb-Ag-Zn deposit, Attica, Greece. Resource Geology, 59, 1-14. https://doi.org/10.1111/j.1751-3928.2008.00076.x DOI: https://doi.org/10.1111/j.1751-3928.2008.00076.x
Soydan, H., Koz, A., Duzgun, H.S., 2021. Secondary iron mineral detection via hyperspectral unmixing analysis with sentinel-2 imagery. International Journal of Applied Earth Observation and Geoinformation, 101, 102343. https://doi.org/10.1016/j.jag.2021.102343 DOI: https://doi.org/10.1016/j.jag.2021.102343
Sun, Y., Tian, S., Di, B., 2017. Extracting mineral alteration information using WorldView-3 data, Geoscience Frontiers, 8, 5, 1051-1062. https://doi.org/10.1016/j.gsf.2016.10.008 DOI: https://doi.org/10.1016/j.gsf.2016.10.008
Sykioti O., Ganas, A., Vasilatos Ch. and Kypritidou, Z., 2022. Detection of mineralized zones at an igneous intrusion in the Koutala islet, Lavreotiki, Greece using Sentinel-2 satellite data and mineralogical analysis. 16th International Congress of the Geological Society of Greece, 17-19 October 2022, Patras, Greece. Bulletin of the Geological Society of Greece, Sp. Publ. 10, pp. 388-389, ISBN: 978-960-98709-8-6.
Tompolidi, A., Sykioti, O., Koutroumbas, K., Parcharidis, I., 2020. Spectral Unmixing for Mapping a Hydrothermal Field in a Volcanic Environment Applied on ASTER, Landsat-8/OLI, and Sentinel-2 MSI Satellite Multispectral Data: The Nisyros (Greece) Case Study. Remote Sensing, 12, 4180. https://doi.org/10.3390/rs12244180 DOI: https://doi.org/10.3390/rs12244180
Van der Meer, F., Van der Werff, H., Van Ruitenbeek, F., Hecker, C., Bakker, H., Noomen, M., Van der Meidje, M., Carranza, E. J. M., de Smeth, B., & Woldai, T., 2012. Multi and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1), 112–128. https://doi.org/10.1016/j.jag.2011.08.002 DOI: https://doi.org/10.1016/j.jag.2011.08.002
Van der Meer, F., and Van der Werff, H.M.A., 2014. Potential of ESA’s Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 124–133. https://doi.org/10.1016/j.rse.2014.03.022 DOI: https://doi.org/10.1016/j.rse.2014.03.022
Van der Meer, F., Kopackova, V., Kaicka, L., Harald, M. A., Van der Werff, H., van Ruitenbeek, F. J. A., & Bakker, W. H., 2018. Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system. International Journal of Applied Earth Observation and Geoinformation, 64, 237–248. https://doi.org/10.1016/j.jag.2017.09.008 DOI: https://doi.org/10.1016/j.jag.2017.09.008
Van der Werff, H.M.A., Van der Meer, F.D., 2015. Sentinel-2 for mapping iron absorption feature parameters. Remote Sensing, 7, 12635–12653. https://doi.org/10.3390/rs71012635 DOI: https://doi.org/10.3390/rs71012635
Van der Werff, H., Van der Meer, F., 2016. Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote Sensing. Remote Sensing, 8, 883. https://doi.org/10.3390/rs8110883 DOI: https://doi.org/10.3390/rs8110883
Vasilatos, C., Economou-Eliopoulos, M., 2018. Fossilized Bacteria in Fe-Mn-Mineralization: Evidence from the Legrena Valley, W. Lavrion Mine (Greece). Minerals, 8, 107. https://doi.org/10.3390/min8030107 DOI: https://doi.org/10.3390/min8030107
Vasilatos, C., Kampouroglou, E.E., Megremi, I., Economou-Eliopoulos, M., 2022. Bio-Geochemical Processes: Insights from Fe-Mn Mineralization in the Aegean Sea (Greece). Minerals, 12, 1303. https://doi.org/10.3390/min12101303 DOI: https://doi.org/10.3390/min12101303
Vasuki, Y., Yu, L., Holden, E., Kovesi, P., Wedge, D., Grigg, A.H., 2019. The spatial-temporal patterns of land cover changes due to mining activities in the Darling Range, Western Australia: A Visual Analytics Approach. Ore Geology Reviews, 108, 23–32, https://doi.org/10.1016/j.oregeorev.2018.07.001 DOI: https://doi.org/10.1016/j.oregeorev.2018.07.001
Voudouris, P., Mavrogonatos, C., Rieck, B.; Kolitsch, U., Spry, P.G., Scheffer, C., Tarantola, A., Vanderhaeghe, O., Galanos, E., Melfos, V., et al., 2018. The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn-Porphyry Mineralization in the Kamariza Mining District, Lavrion, Greece. Minerals, 8, 531. https://doi.org/10.3390/min8110531 DOI: https://doi.org/10.3390/min8110531
Voudouris, P., Melfos, V., Spry, P., Bonsall, T., Tarkian, M., Economou-Eliopoulos, M., 2008. Mineralogical and fluid inclusion constraints on the evolution of the Plaka intrusion-related ore system, Lavrion, Greece. Mineralogy Petrology, 93, 79-110. https://doi.org/10.1007/s00710-007-0218-0 DOI: https://doi.org/10.1007/s00710-007-0218-0
Vural, A., Akpinar, I., Ferkan Sipahi, F., 2021. Mineralogical and chemical characteristics of clay areas, Gu¨mu¨ shane Region (NE Turkey), and their detection using the Crosta technique with Landsat 7 and 8 images. Natural Resources Research, 30, 6, 3955–3985. https://doi.org/10.1007/s11053-021-09912-7 DOI: https://doi.org/10.1007/s11053-021-09912-7
Yamaguchi, Y., Kahle, A.B., Tsu, H., Kawakami, T., Pniel, M., 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36, 1062–1071. https://doi.org/10.1109/36.700991 DOI: https://doi.org/10.1109/36.700991
Yamaguchi, Y., Naito, C., 2003. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. International Journal of Remote Sensing, 24, 4311–4323. https://doi.org/10.1080/01431160110070320 DOI: https://doi.org/10.1080/01431160110070320
Yang, M., Ren, G., Han, L., Yi, H., Gao, T., 2018. Detection of Pb–Zn mineralization zones in west Kunlun using Landsat 8 and ASTER remote sensing data. Journal of Applied Remote Sensing, 12, 026018, https://doi.org/10.1117/1.JRS.12.026018 DOI: https://doi.org/10.1117/1.JRS.12.026018
Yokoya, N., Chan, J.C.W., Segl, K., 2016. Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images. Remote Sensing, 8, 172, https://doi.org/10.3390/rs8030172 DOI: https://doi.org/10.3390/rs8030172
Most read articles by the same author(s)