SCISOLA: REAL-TIME MOMENT TENSOR MONITORING FOR SEISCOMP3


Δημοσιευμένα: Jul 27, 2016
Λέξεις-κλειδιά:
ISOLA Python αυτόματα αντιστροφή μηχανισμός γένεσης
N. Triantafyllis
E. Sokos
A. Ilias
Περίληψη

Ο αυτόματος υπολογισμός του Τανυστή Σεισμικής Ροπής (ΤΣΡ) είναι εξαιρετικά χρήσιμος σε πολλές εφαρμογές της σεισμολογίας που υλοποιούνται σε πραγματικό χρόνο, όπως είναι η εκτίμηση της εδαφικής κίνησης ή η προειδοποίηση για τσουνάμι. Πρόσφατα, αναπτύχθηκε ένα νέο λογισμικό, το scisola, που δύναται να υπολογίσει αυτόματα τον ΤΣΡ. Συγκεκριμένα, συνδέει το ISOLA, ένα ευρέως χρησιμοποιούμενο πρόγραμμα αντιστροφής του ΤΣΡ, με το SeisComP3, ένα επίσης πολύ διαδεδομένο εργαλείο επεξεργασίας -σε πραγματικό χρόνο- σεισμολογικών δεδομένων. Ο αυτόματος υπολογισμός του ΤΣΡ επιτυγχάνεται θέτοντας ως παραμέτρους, στο ISOLA, τη θέση της εστίας του σεισμού, τις κυματομορφές και τα μετα-δεδομένα των σεισμολογικών σταθμών, όπως αυτά καταγράφονται και υπολογίζονται από το SeisComP3. Το scisola έχει προγραμματιστεί σε Python και χρησιμοποιεί ειδικές βιβλιοθήκες που καθιστούν τον υπολογισμό του ΤΣΡ λιγότερο χρονοβόρο, αφού ο υπολογισμός των συναρτήσεων Green καθώς και η αναζήτηση της θέσης/χρόνου του κεντροειδούς, εκτελούνται παράλληλα. Εκτός του αυτόματου υπολογισμού του ΤΣΡ σε πραγματικό χρόνο, το scisola δύναται να χρησιμοποιηθεί, και χειροκίνητα για τον υπολογισμό του ΤΣΡ ενός συγκεκριμένου σεισμού. Τελευταία, αναπτύχθηκε ένα εργαλείο που συνδέεται στο scisola και δημοσιεύει στο διαδίκτυο τις λύσεις των ΤΣΡ που υπολογίστηκαν. Η επίδοση του κώδικα μετρήθηκε συγκρίνοντας αυτόματες λύσεις με τις αντίστοιχες, υπολογισμένες από χρήστη, και αποδείχθηκε ικανοποιητική.

Λεπτομέρειες άρθρου
  • Ενότητα
  • Κλιματολογία
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Αναφορές
Agurto, H., Rietbrock, A., Ryder, I. and Miller, M., 2012. Seismic-afterslip characterization of the
MW 8.8 Maule, Chile, earthquake based on moment tensor inversion, Geophys. Res.
Lett., 39, L20303, doi: 10.1029/2012GL053434.
Bernardi, F., Braunmiller, J., Kradolfer, U. and Giardini, D., 2004. Automatic regional moment
tensor inversion in the European-Mediterranean region, Geophys. J. Int., 157, 703-716.
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y. and Wassermann, J., 2010. ObsPy: A
Python toolbox for seismology, Seismological Research Letters, 81(3), 530-533.
Bouchon, M., 1981. A simple method to calculate Green’s functions for elastic layered media, Bul.
Seism. Soc. Am. 71, 959-971.
Cesca, S., Heimann, S., Stammler, K. and Dahm, T., 2010. Automated procedure for point and
kinematic source inversion at regional distances, Journal of Geophysical Research: Solid
Earth, 115, B06304, doi: 10.1029/2009JB006450.
Coutant, O., 1989. Program of numerical simulation AXITRA, Tech. rep., LGIT, Grenoble, France
(in French).
Delouis, B., Charlety, C. and Vallée, M., 2008. Fast determination of earthquake source parameters
from strong motion records: Mw, focal mechanism, and slip distribution, EGU General
Assembly 2008, Vienna, Austria, 13 April - 18 April.
Di Gregorio, F., 2010. Psycopg: PostgreSQL database adapter for Python. http://initd.org/psycopg.
Dreger, D.S., 2003. TDMT_INV: Time Domain Seismic Moment Tensor INVersion, International
Handbook of Earthquake and Engineering Seismology, 81B, 1627 pp.
Dustman, A., 2010. MySQLdb: a Python interface for MySQL. http://mysql-python.sourceforge.net.
Dziewonski, A.M., Chou, T.A. and Woodhouse, J.H., 1981. Determination of earthquake source
parameters from waveform data for studies of global and regional seismicity, Journal of
Geophysical Research: Solid Earth (1978-2012), 86(B4), 2825-2852.
Ekström, G., Nettles, M. and Dziewoński, A.M., 2012. The global CMT project 2004-2010:
Centroid-moment tensors for 13,017 earthquakes, Phys. Earth planet. Inter., Volumes 200-
, June 2012, Pages 1-9, ISSN 0031-9201, 10.1016/j.pepi.2012.04.002. Available online
Fojtíková, L. and Zahradník, J., 2014. A new strategy for weak events in sparse networks: the firstmotion
polarity solutions constrained by single-station waveform inversion, Seism. Res.
Letters, 85, 1265-1274.
Hunter, J.D., 2007. Matplotlib: A 2D graphics environment, Computing in Science and Engineering,
(3), 0090-95.
Kagan, Y.Y., 1991. 3-D rotation of double-couple earthquake sources, Geophys. J. Int., 106, 709-716.
Kawakatsu, H., 1995. Automated near-realtime CMT inversion, Geophys. Res. Lett., 22, 2569-2572.
Kikuchi, M. and Kanamori, H., 1991. Inversion of complex body waves-III. Bul. Seism. Soc. Am.,
, 2335-2350.
Křížová, D., Zahradník, J. and Kiratzi, A., 2013. Resolvability of Isotropic Component in Regional
Seismic Moment Tensor Inversion, Bull. Seismol. Soc. Am., 103, 2460-2473.
Maercklin, N., Zollo, A., Orefice, A., Festa, G., Emolo, A., De Matteis, R., Delouis, B. and Bobbio, A.,
The Effectiveness of a Distant Accelerometer Array to Compute Seismic Source Parameters:
The April 2009 L’Aquila Earthquake Case History, Bull. Seismol. Soc. Am., 101, 354-365.
Novotný, O., Zahradník, J. and Tselentis, G.A., 2001. Northwestern Turkey earthquakes and the
crustal structure inferred from surface waves observed in western Greece, Bul. Seism. Soc.
Am., 91(4), 875-879.
Quintero, R., Zahradník, J. and Sokos, E., 2014. Near-regional CMT and multiple-point source
solution of the September 5, 2012, Nicoya, Costa Rica Mw 7.6 (GCMT) earthquake, Journal
of South American Earth Sciences, 55, 155-165.
Saul, J., Becker, J. and Hanka, W., 2011. Global moment tensor computation at GFZ Potsdam, AGU
Fall Meeting (San Francisco 2011).
Scognamiglio, L., Tinti, E. and Michelini, A., 2009. Real-time determination of seismic moment tensor
for the Italian region. Bulletin of the Seismological Society of America, 99(4), 2223-2242.
Sokos, E.N. and Zahradník, J., 2008. ISOLA a Fortran code and a Matlab GUI to perform multiplepoint
source inversion of seismic data, Comp. Geosc., 34, 967-977.
Sokos, E. and Zahradník, J., 2013. Evaluating Centroid Moment Tensor Uncertainty in the New
Version of ISOLA Software, Seismol. Res. Lett., 84, 656-665.
Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa,
T., Smith, N. and Kowada, A., 1999. Characterizing crustal earthquake slip models for the
prediction of strong ground motion, Seism. Res. Lett., 70, 59-80.
Triantafyllis, N., Sokos, E. and Ilias, A., 2013. Automatic moment tensor determination for the
Hellenic Unified Seismic Network, 13th International Congress of the Geological Society of
Greece, Chania, Greece, September 5-8.
Triantafyllis, N., Sokos, E., Ilias, A. and Zahradník, J., 2015. SCISOLA: AUTOMATIC MOMENT
TENSOR SOLUTION FOR SEISCOMP3, Seismological Research Letters, First published
on December 2, 2015, doi: 10.1785/0220150065.
Vackář, J., Burjánek, J. and Zahradník, J., 2014. Automated detection of disturbances in seismic
records; MouseTrap code, Seismol. Res. Lett., 86, 442-450, doi: 10.1785/0220140168.
Van der Walt, S., Colbert, S.C. and Varoquaux, G., 2011. The NumPy Array: A Structure for
Efficient Numerical Computation, Computing in Science & Engineering, 13(2), 22-30.
Vannucci, G., Pondrelli, S., Argnani, A., Morelli, A., Gasperini, P. and Boschi, E., 2004. An atlas
of Mediterranean seismicity, Editrice Compositori.
Weber, B., Becker, J., Hanka, W., Heinloo, A., Hoffmann, M., Kraft, T., Pahlke, D., Reinhardt, J.
and Thoms, H., 2007. SeisComP3 - automatic and interactive real time data processing, EGU
General Assembly 2007, Vienna, Austria. 27 April - 2 May.
Yagi, Y. and Nishimura, N., 2011. Moment tensor inversion of near source seismograms, Bulletin
of IISEE, 45, 133-138.
Zahradník, J. and Plešinger, A., 2005. Long-Period Pulses in Broadband Records of Near
Earthquakes, Bull. Seismol. Soc. Am., 95, 1928-1939.
Zahradník, J. and Plešinger, A., 2010. Toward Understanding Subtle Instrumentation Effects
Associated with Weak Seismic Events in the Near Field, Bull. Seismol. Soc. Am., 100, 59-
Τα περισσότερο διαβασμένα άρθρα του ίδιου συγγραφέα(s)