THE A-TYPE KERKINI GRANITIC COMPLEX IN NORTH GREECE: GEOCHRONOLOGY AND GEODYNAMIC IMPLICATIONS


Published: Jan 1, 2007
Keywords:
A-type granite SHRIMP Triassic rift
G. Christofides
A. Koroneos
Α. Liati
J. Kral
Abstract

The Kerkini granitic complex (KGC) intrudes the Serbomacedonian massif KGC comprises the Mûries granite (MUR), the Miriofito granite (MIR), and the Kastanusa (KAS) granodiorite. The main rock-type is two-mica granite. Feldspars are represented by albite andperthitic microcline, biotite is iron-rich and white mica is phengite. Fluorite is also present. The rocks are peraluminous, enriched in total alkalis, depleted in MgO and CaO and have high FeOt/MgO ratios. They are enriched in Zr, Nb, Y, Ga and REE, and have strong negative Eu anomaly. They plot in the Atype granite fields of various discriminant diagrams and their chemistry suggests a WPG tectonic environment. Sr initial ratio ranges from 0.7107 to 0.7182. The most probable genetic model is fluid-absent melting of a biotite-rich tonalitic crustal source at 950 -975 C and at considerable depths. Rb-Sr white mica ages and SHRIMP U-Pb zircon ages yielded 246±3 Ma and 247±2Ma, respectively, interpreted as the crystallization age of the KGC. K-Ar ages of 130±3 and 131 ±3 Ma (biotite) and 133±3 Ma (white mica) can be interpreted by a metamorphic/fluid event at about 133 Ma. Rb-Sr white mica dates at 152±2 Ma probably resulted by incomplete resetting of the Rb-Sr isotopie system and yielded "mixing ages" between crystallization (ca. 247 Ma) possibly related to a Permian - Triassic rift event and metamorphic/fluid event (ca. 133 Ma).

Article Details
  • Section
  • Mineralogy-Petrology-Geochemistry-Economic Geology
Downloads
Download data is not yet available.
References
Batchelor, R.A., and Bowden, P., 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters, Chem. Geol, 48, 43-55.
Chappell, B. W., and White, A. J. R., 1974. Two contrasting granite types, Pacific Geol, 8, 173-174.
Christofides, G., Koroneos, Α., Liati, Α., and Kral, J., 2006. Geochronology of the Kerkini granitic complex (Serbomacedonian massif, N. Greece) and geodnamic implications, Proc. of the XVIII congress of the Carpathian-Balkan Association, Belgrade, Serbia, 3-6 September, 61-64.
Christofides, G., D'Amico, C, Del Moro, Α., Elefteriadis, G., and Kyriakopulos, C, 1990. Rb/Sr geochronology and geochemical characters of the Sithonia plutonic complex (Greece), Eur. J. Mineral., 2, 79-87.
Christofides, G., Koroneos, Α., Pe-Piper, G., Katirtzoglou, Κ., and Chatzikirkou, Α., 1999. Pre-Tertiary A-type magmatism in the Serbomacedonian massif (N. Greece): Kerkini granitic complex, 5w//. Geol. Soc. Greece, XXXIII, 131-148.
Christofides, G., Koroneos, Α., Soldatos, T., and Eleftheriadis, G., 2000. Mesozoic magmatism in the area between the Vardar (Axios) zone and the Serbo-Macedonian massif (Northern Greece). In S. Karamata and S. Jankovic (eds), Proceedings of the International Symposium on Geology and Metallogeny of the Dinarides and the Vardar zone, 111-120. Banja Luka. Academy of Sciences and Arts of The Republic of Republic of Srpska. 537pp.
Clemens, J.D., Holloway, J.R., and White, A.J.R., 1986. Origin of an A-type granite: Experimental constraints, A mer. Miner., 71, 317-324.
Collins, W.J., Beams, S.D., White, A.J.R., and Chappell, B. W., 1982. Nature and origin of A-type granites with particular reference to southeastern Australia, Contib. Mineral. Petrol, 80, 189-200.
Creaser, R.A., Price, R.C., and Worlmald, R.J., 1991. A-type granite revisited: assessement of residual source model, Geology, 19, 163-166.
de Wet, A.P., 1989, Geology of part of the Chalkidiki Peninsula, Northern Greece, PhD thesis, Cambridge, Wolfson College, 177pp.
de Wet, A.P., Miller, J.Α., Bickle, M.J., and Chapman, H.J., 1989. Geology and geochronology of the Arnea, Sithonia and Ouranopolis intrusions, Chalkidiki Peninsula, Northern Greece, Tectonophysics, 161,65-79.
Debon, F., and Le Fort, P., 1983. A chemical-mineralogical classification of commoc plutonic rocks and associations, Trans. R. Soc. Edinburgh:Earth Sci., 73, 135-149.
Dimitriadis, S., and Asvesta, Α., 1993. Sedimentation and magmatism related to the Triassic rifting and later events in the Vardar-Axios zone, Bull. Geol. Soc. Greece, XXVIII/2, 149-168.
Dixon, J.E., and Dimitriadis, S., 1984. Metamorphosed ophiolitic rocks from the Serbo-Macedonian Massif near Lake Volvi, north-east Greece. In J. E Dixon and A. H.
E.Robertson (eds), The geological evolution of eastern Mediterranean, Geol. Soc. (London), Spec. Pubi, 17, 603-618.
Eby, G. N., 1990, The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis, Lithos, 26, 115-134.
Eby, N., 1992. Chemical subdivision of the A-typr granitoids: Petrogenetic and tectonic implications, Geology, 20, 641-644.
Frei, R., 1992. Isotope (Pb, Rb-Sr, S, O, C, U-Pb) geochemical investigations on Tertiary intrusives and related mineralizations in the Serbomacedonian Pb-Zn, Sb+Cu-Mo metallogenic province in Northern Greece, PhD thesis, Zürich, Switzerland, Swiss Federal Institute of Technology (ΕΤΗ), 231 pp.
Kostopoulos, D.K., Reischmannn, T., and Sklavounos, S. Α., 2001. Palaeozoic and Early Mesozoic magmatism and metamorphism in the Serbo-Macedonian massif, Central Macedonia, Northern Greece, European Union of Geosciences, Abstracts, LS03: Tham 01:F2, 318.
Landenberger, B., and Collins, W.J., 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: evidence from the Chaelundi complex, Eastern Australia, J. Petrol, 37,1, 145-170.
Liati, Α., and Fanning, CM., 2005. Eclogites and their country rock orthogneisses in East Rhodope representing Upper Permian gabbros and Upper Carboniferous granitoids: Geochronological constraints, Abstracts of the 7th International Eclogite Conference, Graz, Austria.
Loiselle, M.C., and Wones, D.R., 1979. Characteristics and origin of anorogenic granites, Geol. Soc. Amer. Abstr. Programs, 11, 468.
Miller, F.C., Stoddard, F.E., Bradfish, J.L., and Dollase, A.W., 1981. Composition of plutonic muscovite: genetic implications, Can. Mineral, 19, 25-34.
Mohamed, F.H., Moghazi, A.M., and Hassanen, Μ.Α., 1999. Petrogenesis of Late Proterozoic granitoids in the ras Gharib magmatic province, northern Eastern Desert, Egypt: penological and geochemical constraints, N. Jb. Miner. Abh., 174, 319-353.
Papadopoulos, C, and Kilias, Α., 1985. Altersbeziehungen zwischen Metamorphose und Deformation im Teil Serbomazedonischen Massivs (Vertiskos Gebirge, North-Griechenland), Geol. Rundsch., 74, 77-85.
Pearce, J.A., Harris, N.B.W., and Tindle, A.C., 1984. Trace dement discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol, 25, 956-983.
Pe-Piper, G., and Piper, D.J.W., 2002. The igneous rocks of Greece: the anatomy of an orogen, Berlin, Borntraeger, 645pp.
Sakellariou, D., 1989. Geologie des Serbomazedonischen Massivs in der Nordoestlichen Chalkidiki, N. Griechenland - Deformation und Metamorphose, Diss. Mainz Univ., Geol. Monographs N. 2, Dept of Geology Univ. Athens, 177pp.
Schleicher, H., and Lippolt, H.J., 1981. Magmatic muscovite in felsitic parts of rhyolites from Southwest Germany, Contrib. Mineral. Petrol, 78, 220-224.
Skjerlie, K.P., and Johnston, D.A., 1993. Fluid-absent melting behaviour of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites, J. Petrol, 34,4, 785-815.
Stern, R., 1997. The GSC Sensitive High Resolution Ion Microprobe (SHRIMP): analytical techniques of zircon U-Th-Pb age determinations and performance evaluation. In Radiogenic Age and isotope studies: Report 10.1-31, Geological Survey of Canada, Current research.
Tera, F., and Wasserburg, G.J., 1972, U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks, Earth Planet. Sci. Lett., 14, 281-304.
Whalen, J.B., Currie, K.L., and Chappel, B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol, 95, 407-419.
White, A.J.R., and Chappell, B.W., 1977. Ultrametamorphism and granitoid genesis, Tectonophysics, 43, 7-22.
White, A.J.R., 1979. Sources of granite magmas, Geol. Soc. Amer. Abstr. Programs, 11, 539.
Wu, T.W., and Kerrich, R., 1986. Combined oxygen-isotope - compositional studies of some granitoids from the Grenville Province of Ontario, Can. J. Earth Sci., 23, 1412-1432.
Wu, F., Sun. D., Li, H., Jahn, Β., and Wilde, S., 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis, Chem. Geol, 187, 143-273.
Zen, E-An., 1988. Phase relations of peraluminous granitic rocks and their petrogenetic implicatios, Ann. Rev. Earth Planet Sci., 16, 21 -51.
Zhou, T., Yuan, F., Tan, L., Fan, Y., and Yue, S., 2006. Geodynamic significance of the A-type granites in the Sawuer region in west Junggar, Xinjiang: Rock geochemistry and SHRIMP zircon age evidence, Sci. in China Series D (Earth Sci.), 49,2, 113-123.
Most read articles by the same author(s)