Coseismic stress distribution along active structures and their influence on timedependent probability values.


P. Paradisopoulou
E. Papadimitriou
J. Mirek
V. Karakostas
Résumé

Based on the fact that stress changes caused by the coseismic slip of strong events can be incorporated into quantitative earthquake probability estimates, the goal of this study is to estimate the probability of the next strong earthquake (M≥6.5) on a known fault segment in a future time interval (30 years). The probability depends on the calculation of ΔCFF and the estimate of the occurrence rate of a characteristic earthquake, conditioned to the elapsed time since the previous event. The Coulomb stress changes caused by previous earthquakes are computed and their influence are considered by the introduction of a permanent shift on the time elapsed since the
previous earthquake or by a modification of the expected mean recurrence time. The occurrence rate is calculated, taking into account both permanent and temporary perturbations. The estimated probability values correspond to the probabilities along each fault segment with discretization of 1km, illustrating the probability distribution across the specific fault. In order to check whether the estimated probability vary with depth, all the estimations were performed for each fault at depths of 8, 10, 12 and 15 km. 

Article Details
  • Rubrique
  • Articles
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Ambraseys N.N. 2002. The seismic activity of the Marmara Sea region over the last 2000 years, Bulletin Seismological Society of America, 92, 1-18.
Ambraseys N.N. and J. A. Jackson 2000. Seismicity of Marmara (Turkey) since 1500, Geophysical Journal International, 141, F1-F6.
Briole P., Rigo A. Lyon-Caen, H. Ruegg J.C., Papazissi K., Mitsakaki C., Balodimou A., Veis G., Hatzfeld D. and Deschamps A. 2000. Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995, Journal of Geophysical Research 105, 605-625.
Collier, R. E., Pantosti D., D'addezio G., De Martini P.M., Masana E. and Sakellariou D. 1998. Paleoseismicity of the 1981 Corinth earthquake fault: seismic contribution to extensional strain in central Greece and implications for seismic hazard, Journal of Geophysical Research 103, 30001-30019.
Cornell C.A., Wu S.C., Winterstein S.R., Dieterich J.H. and Simpson R.W. 1968. Seismic hazard induced by mechanically interactive fault segments, Bulletin Seismological Society of America 83, 436–449.
Dieterich J.H. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering, Journal of Geophysical Research, 99, 2601–2618.
Dieterich J. H. and Kilgore B. 1996. Implications of fault constitutive properties for earthquake prediction, Proceedings of the National Academy of Sciences U.S.A, 93, 3787–3794.
Hagiwara Y. 1974. Probability of earthquake occurrence as obtained from a Weibull distribution analysis of crustal strain, Tectonophysics, 23, 313-318.
Klinger Y., Sieh, K., Altunel, E., Akoglu, A., Barka A., Dawson T., Gonzalez T., Meltzner A. and Rockwell T. 2003. Paleoseismic Evidence of Characteristic Slip on the Western Segment of the North Anatolian Fault, Turkey, Bulletin of Seismological Society of America, 93, 2317–2332.
Koukouvelas I.K., Stamatopoulos L., Katsanopoulou D. and Pavlides S. 2001. A palaeoseismological and geoarchaeological investigation of the Eliki fault, Gulf of Corinth, Greece, Journal of Structural Geology, 23, 531-543.
Kurcer A., Chatzipetros A., Tutkun S. Z., Pavlides S., Ates O. and Valkaniotis S. 2008. The Yenic Gonen active fault (NW Turkey): Active tectonics and palaeoseismology, Tectonophyics 453, 263–275.
Nishenko S. P. and Buland R. 1987. A generic recurrence interval distribution for earthquake fore-casting, Bulletin Seismological Society of America, 77, 1382–1399.
Okada Y. 1992. Internal deformation due to shear and tensile faults in a half space, Bulletin of Seismological Society of America, 82, 1018-1040.
Palyvos N., Pantosti D., Zabci C. and D’ Addezio G. 2007. Paleoseismological evidence of recent earthquakes on the 1967 Mudurnu valley earthquake segment of the North Anatolian Fault zone, Bulletin Seismological Society of America, 97, 1 646–1661.
Pantosti D., De Martini P.M., Papanastassiou D., Lemeille F., Palyvos N. and Stavrakakis G. 2004. Paleoseismological Trenching across the Atalanti Fault (Central Greece): Evidence for the Ancestors of the 1894. Earthquake during the Middle Age and Roman Times, Bulletin Seismological Society of America, 94, 2, 531-549
Pantosti D., Pucci S., Palyvos N., De Martini P.M., D’ Addezio G., Collins P.E.F. and Zabci C. 2008. Paleoearthquakes of the Düzce fault (North Anatolian Fault Zone): Insights for large surface faulting earthquake recurrence, Journal of Geophysical Research 113, doi:10.1029/2006JB004679.
Papazachos B. C. and Papazachou C. 2003. The earthquakes of Greece, Ziti publications, Thessaloniki, 289 pp.
Paradisopoulou P.M., Papadimitriou E.E., Karakostas V.G., Taymaz T., Kilas A., and Yolsal S. 2010a. Seismic hazard evaluation in western Turkey as revealed by stress transfer and time-dependent probability calculations, Pure and Applied Geophysics doi: 10.1007/s00024-010-0085-1.
Paradisopoulou P.M., Papadimitriou E.E., Karakostas, V.G., Lasocki S., Mirek J. and Kilias A. 2010b. Influence of stress transfer in probability estimates of M≥6.5 earthquakes in Greece and surrounding areas 2010, Bulletin of the Geological Society of Greece, XLIII, 2114–2124.
Parsons T. 2004. Recalculated probability of M≥7 earthquakes beneath the Sea of Marmara, Tur-key, Journal of Geophysical Research, 109, doi:10.1029/2003JB002667.
Parsons T. 2005. Significance of stress transfer in time–dependent earthquake probability calculations, Journal of Geophysical Research, 110, doi: 10.1029/2004JB003190.
Parsons T., Toda S., Stein R. S., Barka A. and Dieterich J.H. 2000. Heightened odds of large earthquakes near Istanbul: An interaction–based probability calculation, Science, 288, 661–665.
Pavlides S.B., Valkaniotis S., Ganas A., Keramydas D. and Sboras S. 2004. The Atalanti active fault: re-evaluation using new geological data, Bulletin of the Geological Society of Greece vol. XXXVI, Proceedings of the 10th International Congress, 1560-1567, Thessaloniki.
Pondard N., Armijo R., King, G. C. P., Meyer B. and Flerit F. 2007. Fault interactions in the Sea of Marmara pull–apart (North Anatolian Fault): earthquake clustering and propagating earthquake sequences, Geophysical Journal International, 171, 1185–1197.
Robinson R. and McGinty P.J. 2000. The enigma of the Arthur’s Pass, New Zealand, earthquake. 2. The aftershock distribution and its relation to regional and induced stress fields, Journal of Geophysical Research, 105, 16139-16150.
Rockwell T., Barka A., Dawson T., Akyuz S. and Thorup K. 2001. Paleoseismology of the Gazikoy–Saros segment of the North Anatolia fault, northwestern Turkey: Comparison of the historical and paleoseismic records, implications of regional seismic hazard and models of earthquake recurrence, Journal of Seismology, 5, 433–448.
Stein R.S., Barka A.A. and Dieterich J.D. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering, Geophysical Journal International, 128, 594-604.
Toda S., Stein R.S., Reasenberg P.A. and Yoshida A. 1998. Stress transferred by the 1995 Mw=6.9 Kobe, Japan shock: Effect on aftershocks and future earthquake probabilities, Journal of Geophysical Research, 124, 439-451.
Working Group on California Earthquake Probabilities (WGCEP), 1990. Probabilities of large earthquakes in the San Francisco Bay region, California, U.S. Geol. Surv. Circ. 1053, 51pp.
Working Group on California Earthquake Probabilities (WGCEP), 1999. Probabilities of large earthquakes in the San Francisco Bay region, California, U.S. Geological Survey, Open File Report, 99-517.
Articles les plus lus par le même auteur ou la même autrice