Quantitative fault analysis at Arkitsa, Central Greece, using Terrestrial Laser- Scanning ("LIDAR")


S. Kokkalas
R. R. Jones
K.J. W. McCaffrey
P. Clegg
Résumé

We applied terrestrial laser scanning (ground-based LiDAR) in the Arkitsa fault zone, an area of active extension along the North Evia Gulf in Central Greece. The study area includes well exposed fault surfaces with large accumulated slip and this allowed detailed measurements of the geometry of the fault planes to be acquired. Laser-scan data enable ultra high-resolution three-dimensional digital terrain models of the recently exposed active fault to be created, in order to apply quantitative fault and slip-vector analysis. This study demonstrates the way in which the Arkitsa Fault is segmented on a smaller scale. The variation in dip and strike across individual fault panels is quantified, and shows the extent to which the fault panel surfaces are non-planar. Although the dip of the different fault panels varies considerably, the average orientation of the slip-vectors on the panels are approximately coincident. The fault is steeply oblique sinistral-normal, with average displacement vector plunging 55° towards 340°.

Article Details
  • Rubrique
  • New Technologies in Geophysical and Geological Research
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Ahlgren, S., and Holmlund, J. 2002. Outcrop Scans Give New View. American Association of Petroleum Geologists Explorer, July 2002. Available online at: http://www.aapg.org/explorer/geophysical_corner/2002/07gpc.cfm.
Ambraseys, N.N., and Jackson, J.A., 1990. Seismicity and associated strain of central Greece between 1890 and 1988, Geophysical Journal International, 101, 663-708.
Angelier, J., 1994. Fault slip analysis and paleostress reconstruction. In P.L. Hancock (ed.), Continental Deformation, Pergamon Press, Oxford, 53-100pp.
Angiolini, L., Dragonetti, L., Muttoni, G., and Nicora, Α., 1992. Triassic stratigraphy in the island of Idra (Greece), Riv. It. Paleont. Strat., 98/2, 137-180.
Baud, Α., Jenny, C, Papanikolaou, D., Sideris, C., and Stampili, G.M., 1991. New observations on Permian stratigraphy in Greece and geodynamic implication, Bull. Geol. Soc. Greece, XXV/1, 187-206.
Bawden, G.W., Kayen, R., Silver, M.H., Brandt, J.T., and Collins, B.D., 2004. Evaluating tripod LIDAR as an earthquake response tool, EOS Trans. Am. Geophys. Union, 85, 47, Fall Meeting Supplement, Abstract S51C-0170R.S.
Bellian, J.A., Kerans, C., and Jennette, D.C. 2005. Digital outcrop models: applications of terrestrial scanning lidar technology in stratigraphie modelling, Journal of Sedimentary Research, 75, 166-176.
Boehler, M., and Marbs, Α., 2002 3D scanning instruments.Proceedings, International Workshop on Scanning for Cultural Heritage Recording, Corfu, Greece. 160 9-12pp.
Clement, B., 1983. Evolution géodynamique d'un secteur des Hellénides: l'Attique septentrionale, Annales Société géologique du Nord, 101, 87-96.
Collins, B.D., and Sitar, N., 2004. Application of high-resolution 3-D laser scanning to slope stability studies, 39th Annual Symposium on Engineering Geology and Geotechnical Engineering, Butte, Mont.
Doutsos, T., and Kokkalas, S., 2001. Stress and deformation in the Aegean region, Journal of Structural Geology, 23, 455-472.
Doutsos, T., and Poulimenos, G., 1992. Geometry and kinematics of active faults and their seismotectonic significance in the western Corinth-Patras rift (Greece), Journal of Structural Geology, 14, 689-699.
Ganas, Α., Roberts, G., and Memou, P., 1998. Segment boundaries, the 1894 ruptures and strain patterns along the Atalanti fault, central Greece, Journal of Geodynamics, 26, 461-486.
Ganas, Α., Sokos, E., Agalos, Α., Leontakianakos, G., and Pavlides, S., 2006. Coulomb stress triggering of earthquakes along the Atalanti fault, Central Greece: Two April 1894 M6+ events and stress changes patterns, Tectonophysics, 420, 357-369.
Guemet, C, 1971. Etudes géologiques en Eubée et dans les régions voisines (Grec), Thèse d'Etat Univ. Paris, 395pp., Paris.
Jackson, J., and McKenzie, D., 1999. A hectare of fresh striations on the Arkitsa fault, central Greece, Journal of Structural Geology, 21, 1-6.
Jones, R.R., McCaffrey, K.J.W, Wilson, R.W., and Holdsworth, R.E., 2004. Digital field data acquisition towards increased quantification of uncertainty during geological mapping. In: A. Curtis and R. Wood (eds), Geological Prior Information, Geological Society Special Publication 239, in press.
Katsikatsos, G., Migiros, G.P., Triantaphyllis, M., and Mettos, Α., 1986. Geological structure of internal Hellenides (E. Thessaly-SW. Macedonia, Euboea-Attica-Northern Cyclades Islands and Lesvos). In Papastamatiou J. memorial issue (ed. I.G.Μ.E). Special Issue, Geological and Geophysical Research, Athens, 191-212.
Kayen, R., Barnhardt, W., Carkin, B., Collins, B. D., Grossman, E.E., Minasian, D., and Thompson, E., 2004. Imaging the M 7.9 Denali Fault earthquake 2002 rupture at the Delta River using LIDAR, RADAR, and SASW surface wave geophysics, EOS Trans. Am. Geophys. Union, 85 (47), Fall Meeting Supplement, Abstract SI 1A-0999.
Kokkalas, S., Xypolias, P., Koukouvelas, I., and Doutsos, T., 2006. Postcollisional contractional and extensional deformation in the Aegean region, In Y. Dilek and S. Pavlides (eds), Postcollisional tectonics and magmatism in the Mediterranean region and Asia: Geological Society of America Special Paper 409, p. 97-123, doi: 10.1130/2006.2409(06).
McCaffrey, K.J.W., Holdsworth, R.E., Clegg, P.,Jones, R.R., and Wilson, R.W., 2003. Using Digital Mapping Tools and 3D visualisation to Improve Undergraduate fieldwork, PLANET, 5, 34-37
McCaffrey, K.J.W., Jones, R.R., Holdsworth, R.E., Wilson, R.W., Clegg, P., Imber, J., Holliman, N., and Trinks, I., 2005. Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork, Journal of the Geological Society, London, 162, 927-938.
Meijer, P.T., and Wortel, M.J.R., 1997. Present-day dynamics of the Aegean region: A model analysis of the horizontal pattern of stress and deformation, Tectonics, 16, 879-895.
Paar, G., Nauschnegg, Β., and Ullrich, Α., 2000. Laser scanning monitoring—Technical concepts, possibilities, and limits, Natural Hazards Workshop, June 5-7, Igls, Austria.
Pack, R.T., 2002. Engineering geologic mapping using 3-D imaging technology, 37th Annual Symposium on Engineering Geology and Geotechnical Engineering, Boise, Idaho.
Pavlides, S.B., Valkaniotis, S., Ganas, Α., Keramydas, D., and Sboras, S., 2004 The Atalanti active fault: re-evaluation using new heological data, Bulletin of the Geological Society of Greece, XXXVI, Proceedings of the 10th International Congress, Thessaloniki, 1560-1567
Pe-Piper, G., and Panagos, A.G., 1989. Geochemical characteristics of the triassic volcanic rocks of Evia: petrogenetic and tectonic implications, Ofioliti, 33-50.
Richter, D., Müller, C, and Risch, H., 1996. Die Flysch-Zonen Griechenlands, XI. Neue Daten zur Stratigraphie und Paläogeographie des Flysches und seiner Unterlage in der Pelagonischen Zone (Griechenland), N. Jb. Geol. Paläont. Abh., 201/3,327-366.
Roberts, G.P., and Koukouvelas, L, 1996. Structural and seismological segmentation of the Gulf of Corinth Fault System: implications for models of fault growth, Annali di Geophysics, XXXIX, 619-646.
Robertson, A.H.F., Clift, P.D., Degnan, P.J., and Jones, G., 1991. Paleogeographic and paleotectonic evolution of the Eastern Mediterranean Neotethys. In J.E.T. Channeil E.L. Winterer and L.F Jansa (eds), Paleogeography andpaleoceanography ofTethys, Palaeogeography, Palaeoclimatology, Palaeoecology 87, Elsevier, 289-343.
Rowlands, K.A., Jones, L.D., and Whitworth, M., 2003. Landslide Laser Scanning: a new look at an old problem, The Quarterly Journal of Engineering Geology and Hydrogeo logy, 36(2), 155-157.
Segali, P., and Pollard, D.D., 1980. Mechanics of discontinuous faults, Journal of Geophysical Research, 85,No B8, 4337-4350.
Scheikl, M., Poscher, G., and Grafinger, H., 2000. Application of the new automatic laser remote monitoring system ALARM for the continuous observation of the mass movement at the Eiblschrofen rockfall area, Tyrol, Austria, Natural Hazards Workshop, June 5-7, Igls, Austria.
Smith, A.G., Woodcock, N.H., and Naylor, M.A., 1979. The structural evolution of a Mesozoic continental margin, Othris Mountains, Greece, Journal of theGeological Society, London, 136, 589-603.
Spang, J.H., 1972. Numerical method for dynamic analysis of calcite twin lamellae, Geol. Soc. Am. Bull., 83,467-472.
Turner, F.J., 1953. Nature and dynamic interpretation of deformation lamellae in calcite of three marbles, Am. J. Sci., 251, 276-298.
Westaway, R., 1991. Continental extension on sets of parallel faults: observational evidence and theoretical models. In A.M. Roberts, G. Yielding and B. Freeman (eds), The Geometry of Normal Faults. Geol. Soc. London Spec. Pubi. 56, 143-169.
Articles les plus lus par le même auteur ou la même autrice