MADAM: A temporary seismological survey experiment in Aetolia-Akarnanian region (Western Greece)


Valentine Lefils
https://orcid.org/0000-0002-0622-430X
Alexis Rigo
Efthimios Sokos
Résumé

The Aetolia-Akarnanian region, in Western Greece, is considered to be part of a micro-plate in formation, named the Ionian Island-Akarnanian Block (IAB), in the larger-scale Central Mediterranean tectonic context. The IAB accommodates the deformations between the surrounding tectonic structures that are the Corinth Gulf, the Hellenic subduction, the Kefalonia Transform Fault and the Apulian collision. This work presents the first results of a dense temporary seismic survey in the Aetolia-Akarnanian region (from the Amvrakikos Gulf to the Patras Gulf). Our local dense network has been designed in order to avoid gaps and to allow the recording of a major part of the Akarnania seismicity. With a semi-automatic events detection and picking program, we detected more than 15000 events from October 2015 to December 2018. With this important data set we constrained a 1D local velocity model. The comparison with the previous published models shows a possible significant velocity variation inside the region and especially at the Trichonis lake graben. Thanks to our data set and our velocity model, we precisely located 12723 seismic events with magnitude 0 < ML < 4.6, and a magnitude of completeness Mc = 1.0, that represents actually the most important catalogue for the Aetolia-Akarnania. Seismicity highlights specific seismic structures as clusters and a seismic plane below the West of Corinth Gulf that are briefly discussed.

Article Details
  • Rubrique
  • Seismology
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Allen, R. V., 1978. Automatic earthquake recognition and timing from single traces. Bulletin of the seismological society of America, 68 (5), 1521–1532, https://doi.org/10.1785/BSSA0680051521.
Avallone, A., Briole, P., Agatza-Balodimou, A. M., Billiris, H., Charade, O., Mitsakaki, C., Nercessian, A., Papazissi, K., Paradissis, D., and Veis, G., 2004. Analyse de onze années de mesures de deformations collectées par GPS dans la zone du laboratoire du rift de Corinthe. Comptes Rendus. Geoscience, 336, 301-311. https://doi.org/10.1016/J.CRTE.2003.12.007
Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., and Mangeney, A., 2014. An automatic kurtosis-based p-and s-phase picker designed for local seismic networks. Bulletin of the Seismological Society of America, 104, 394–409. https://doi.org/10.1785/0120120347.
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J., 2010. Obspy: A python toolbox for seismology. Seismological Research Letters, 81 (3), 530–533. https://doi.org/10.1785/GSSRL.81.3.530.
Bogiatzis, P. and Ishii, M., 2015. Continuous wavelet decomposition algorithms for automatic detection of compressional-and shear-wave arrival times. Bulletin of the Seismological Society of America, 105 (3), 1628–1641. https://doi.org/10.1785/0120140267.
Briole, P., Rigo, A., Lyon-Caen, H., Ruegg, J. C., Papazissi, K., Mitsakaki, C., Balodimou, A., Veis, G., Hatzfeld, D., and Deschamps, A., 2000. Active deformation of the Corinth rift, Greece: Results from repeated global positioning system surveys between 1990 and 1995. Journal of Geophysical Research: Solid Earth, 105, 25605–25625. https://doi.org/10.1029/2000JB900148.
Briole, P., Ganas, A., Elias, P., and Dimitrov, D., 2021. The GPS velocity field of the Aegean. new observations, contribution of the earthquakes, crustal blocks model. Geophysical Journal International, 226 (1), 468–492. https://doi.org/10.1093/GJI/GGAB089.
Chen, C. and Holland, A. A., 2016. Phasepapy: A robust pure python package for automatic identification of seismic phases. Seismological Research Letters, 87, 1384–1396, https://doi.org/10.1785/0220160019.
Chousianitis, K., Ganas, A., and Gianniou, M., 2013. Kinematic interpretation of present-day crustal deformation in central Greece from continuous GPS measurements. Journal of Geodynamics, 71, 1–13. https://doi.org/10.1016/J.JOG.2013.06.004.
Corinth Rift Laboratory Team and RESIF Datacenter, 2013. Cl - Corinth rift laboratory seismological network (crlnet). resif - réseau sismologique et géodésique français.
D’Agostino, N., Avallone, A., Cheloni, D., D’Anastasio, E., Mantenuto, S., and Selvaggi, G., 2008. Active tectonics of the Adriatic region from GPS and earthquake slip vectors. Journal of Geophysical Research: Solid Earth, 113. https://doi.org/10.1029/2008JB005860.
Duverger, C., 2017. Sismicité, couplages sismique-asismiques et processus transitoires de déformation dans un système de failles actives: le rift de Corinthe, Grèce. https://theses.hal.science/tel-02151611
Duverger, C., Lambotte, S., Bernard, P., Lyon-Caen, H., Deschamps, A., and Nercessian, A., 2018. Dynamics of microseismicity and its relationship with the active structures in the western Corinth rift (Greece). Geophysical Journal International, 215, 196–221. https://doi.org/10.1093/gji/ggy264.
Evangelidis, C. P., Triantafyllis, N., Samios, M., Boukouras, K., Kontakos, K., Ktenidou, O.-J., Fountoulakis, I., Kalogeras, I., Melis, N. S., Galanis, O., et al. 2021. Seismic waveform data from Greece and Cyprus: Integration, archival, and open access. Seismological Society of America, 92 (3), 1672–1684. https://doi.org/10.1785/0220200408.
Gentili, S. and Michelini, A., 2006. Automatic picking of p and s phases using a neural tree. Journal of Seismology, 10 (1), 39–63. https://doi.org/10.1007/s10950-006-2296-6.
Godano, M., Deschamps, A., Lambotte, S., Lyon-Caen, H., Bernard, P., and Pacchiani, F., 2014. Focal mechanisms of earthquake multiplets in the western part of the Corinth rift (Greece): Influence of the velocity model and constraints on the geometry of the active faults. Geophysical Journal International, 197, 1660–1680. https://doi.org/10.1007/s10950-006-2296-6.
Gutenberg, B. and Richter, C. F., 1944. Frequency of earthquakes in California. Bulletin of the Seismological society of America, 34 (4), 185–188. https://doi.org/10.1785/BSSA0340040185.
Haslinger, F., 1998. Velocity structure, seismicity and seismotectonics of northwestern Greece between the gulf of Arta and Zakynthos. https://doi.org/10.3929/ethz-a-002025706
Haslinger, F., Kissling, E., Ansorge, J., Hatzfeld, D., Papadimitriou, E., Karakostas, V., Makropoulos, K., Kahle, H.-G., and Peter, Y., 1999. 3D crustal structure from local earthquake tomography around the gulf of Arta (Ionian region, NW Greece). Tectonophysics, 304, 201–218. https://doi.org/10.1016/S0040-1951(98)00298-4.
Hatzfeld, D., Kassaras, I., Panagiotopoulos, D., Amorese, D., Makropoulos, K., Karakaisis, G., and Coutant, O., 1995. Microseismicity and strain pattern in northwestern Greece. Tectonics, 14, 773–785. https://doi.org/10.1029/95TC00839.
HUSN Team 2005. H.U.S.N - Hellenic unified seismic network. https://www.gein.noa.gr/en/networks-equipment/hellenic-unified-seismic-network-h-u-s-n/.
Kassaras, I., Kapetanidis, V., and Karakonstantis, A., 2016. On the spatial distribution of seismicity and the 3d tectonic stress field in western Greece. Physics and Chemistry of the Earth, 95, 50–72. https://doi.org/10.1016/j.pce.2016.03.012.
Kassaras, I., Kapetanidis, V., Karakonstantis, A., Kaviris, G., Papadimitriou, P., Voulgaris, N., Makropoulos, K., Popandopoulos, G., and Moshou, A., 2014. The April-June 2007 Trichonis lake earthquake swarm (w. Greece): New implications toward the causative fault zone. Journal of Geodynamics, 73, 60–80. https://doi.org/10.1016/j.jog.2013.09.004.
Kaviris, G., Elias, P., Kapetanidis, V., Serpetsidaki, A., Karakonstantis, A., Plicka, V., Barros, L. D., Sokos, E., Kassaras, I., Sakkas, V., Spingos, I., Lambotte, S., Duverger, C., Lengliné, O., Evangelidis, C. P., Fountoulakis, I., Ktenidou, O.-J., Gallovič, F., Bufféral, S., Klein, E., Aissaoui, E. M., Scotti, O., Lyon-Caen, H., Rigo, A., Papadimitriou, P., Voulgaris, N., Zahradnik, J., Deschamps, A., Briole, P., and Bernard, P., 2021. The western gulf of Corinth (Greece) 2020-2021 seismic crisis and cascading events: First results from the Corinth rift laboratory network. The Seismic Record, 1, 85–95. https://doi.org/10.1785/0320210021.
Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., and Kradolfer, U., 1994. Initial reference models in local earthquake tomography. Journal of Geophysical Research, 99. https://doi.org/10.1029/93JB03138.
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., and Wassermann, J. 2015. Obspy: A bridge for seismology into the scientific python ecosystem. Computational Science & Discovery, 8 (1), 014003. https://doi.org/10.1088/1749-4699/8/1/014003.
Lambotte, S., Lyon-Caen, H., Bernard, P., Deschamps, A., Patau, G., Nercessian, A., Pacchiani, F., Bourouis, S., Drilleau, M., and Adamova, P., 2014. Reassessment of the rifting process in the western Corinth rift from relocated seismicity. Geophysical Journal International, 197, 1822–1844. https://doi.org/10.1093/GJI/GGU096.
Lee, W. H. K. and Lahr, J. C., 1972. HYPO71: A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes. US Department of the Interior, Geological Survey, National Center for Earthquake Research. https://doi.org/10.3133/OFR75311.
Leonard, M. and Kennett, B., 1999. Multi-component autoregressive techniques for the analysis of seismograms. Physics of the Earth and Planetary Interiors, 113 (1-4), 247–263. https://doi.org/10.1016/S0031-9201(99)00054-0.
Megies, T., Beyreuther, M., Barsch, R., Krischer, L., and Wassermann, J., 2011. Obspy–what can it do for data centers and observatories? Annals of Geophysics, 54 (1), 47–58. https://doi.org/10.4401/AG-4838 .
Nocquet, J. M., 2012. Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics, 579, 220–242. https://doi.org/10.1016/j.tecto.2012.03.037.
Novotný, O., Sokos, E., and Plicka, V., 2012. Upper crustal structure of the western Corinth gulf, Greece, inferred from arrival times of the January 2010 earthquake sequence. Studia Geophysica et Geodaetica, 56, 1007–1018. https://doi.org/10.1007/s11200-011-0482-7.
Pérouse, E., 2013. Cinématique et tectonique active de l’Ouest de la Grèce dans le cadre géodynamique de la Méditerranée Centrale et Orientale. https://theses.hal.science/tel-00842274
Pérouse, E., Chamot-Rooke, N., Rabaute, A., Briole, P., Jouanne, F., Georgiev, I., and Dimitrov, D., 2012. Bridging onshore and offshore present-day kinematics of central and eastern Mediterranean: Implications for crustal dynamics and mantle flow. Geochemistry, Geophysics, Geosystems, 13. https://doi.org/10.1029/2012gc004289.
Pérouse, E., Sébrier, M., Braucher, R., Chamot-Rooke, N., Bourlès, D., Briole, P., Sorel, D., Dimitrov, D., and Arsenikos, S., 2017. Transition from collision to subduction in western Greece: the Katouna–Stamna active fault system and regional kinematics. International Journal of Earth Sciences, 106, 967–989. https://doi.org/10.1007/s00531-016-1345-9.
Rigo, A., Lyon-Caen, H., Armijo, R., Deschamps, A., Hatzfeld, D., Makropoulos, K., Papadimitriou, P., and Kassaras, I., 1996. A microseismic study in the western part of the gulf of Corinth (Greece): Implications for large-scale normal faulting mechanisms, Geophysical Journal International, 126, 663–688. https://doi.org/10.1111/J.1365-246X.1996.TB04697.X.
Satriano, C., 2021. Sourcespec – earthquake source parameters from P- or S-wave displacement spectra. https://doi.org/10.5281/ZENODO.3688587.
Vassallo, M., Satriano, C., and Lomax, A., 2012. Automatic picker developments and optimization: A strategy for improving the performances of automatic phase pickers. Seismological Research Letters, 83 (3), 541.
Wadati, K. and Oki, S., 1933. On the travel time of earthquake waves, ii, Geophys. Mag, 7, 101–111. https://doi.org/10.2151/jmsj1923.11.1_14 .
Articles les plus lus par le même auteur ou la même autrice