In situ observation of circadian rhythm of polyps’ opening and closing of the coral Dendrophyllia ramea (Linnaeus, 1758)


Published: Oct 17, 2023
Keywords:
Scleractinian corals time-lapse polyp’s rhythm Ionian Sea Global Underwater Explorers East Sicily
EVA SALVATI
CLAUDIO PROVENZANI
ANDREA D'AMBROSI
https://orcid.org/0000-0001-9498-4810
MARIA GRAZIA FINOIA
https://orcid.org/0000-0003-0765-0631
ELENA ROMANO
https://orcid.org/0000-0001-9498-4810
SIMONEPIETRO CANESE
https://orcid.org/0000-0001-6049-4506
Abstract

A widespread population of the coral Dendrophyllia ramea has been revealed southeast of Syracuse (East Sicily, Italy) at around 75 m depth. Dendrophyllia ramea is an arborescent scleractinian coral, classified as “Vulnerable” in the Mediterranean IUCN Red List and listed in Annex B of the Barcelona Convention. It is considered rare because it is seldom recorded on the Mediterranean seabed. In situ observations of two selected colonies were carried out over three months using a custom-made underwater video recording system to increase knowledge about the ecology of the species, specifically its circadian rhythm. The area was also surveyed using a special navigation system integrated into a diver propulsion vehicle to map the colonies’ position and distribution. The rhythms of the opening and closing of Dendrophyllia ramea’s polyps during the day were studied and linked to environmental factors, such as temperature, water flow, and direction.


The results show that Dendrophyllia ramea opens and closes its polyps according to its circadian rhythm and water flow in analogy with other anthozoans in different environments. The opening/closing frequency analysis showed that both colonies closed at least once daily with different periodicity; one colony closed on average a few hours earlier. This project gathered important information on D. ramea’s circadian rhythm, which is relevant for improving knowledge about the ecology of this species since it provides insights into its feeding behavior, reproduction seasonality, response to environmental changes, interactions with other species, and conservation needs.

Article Details
  • Section
  • Research Article
Downloads
Download data is not yet available.
References
Aguzzi, J., Company, J.B., Costa, C., Matabos, M., Azzurro, E. et al., 2012. Challenges to the assessment of benthic populations and biodiversity as a result of rhythmic behavior: Video solutions from cabled observatories. Oceanography and Marine Biology – An Annual Review, 50, 235.
Argnani, A., Bonazzi, C., 2005. Malta Escarpment fault zone offshore eastern Sicily: Pliocene-Quaternary tectonic evolution based on new multichannel seismic data. Tectonics, 24, TC4009.
Batham, E.J., Pantin, C.F.A., Robson, E.A., 1960. The nervenet of the sea anemone, Metridium senile (L.): the mesenteries and column. Quarterly Journal of Microscopical Science, 101, 487-510.
Bell, J.J., Shaw, C., Turner, J.R., 2006. Factors controlling the tentacle and polyp expansion behavior of selected temperate Anthozoa. Journal of the Marine Biological Association of the United Kingdom, 86 (05), 977.
Bo, M., Canese, S., Bavestrello, G., 2019. On the coral-feeding habit of the sea star Peltaster placenta. Marine Biodiversity, 49, 2009-2012.
Boero, F., Cicogna, F., Pessani, D., Pronzato, R., 1991. In situ observations on contraction behavior and diel activity of Halcampoides purpurea var. mediterranea (Cnidaria, Anthozoa) in a marine cave. Marine Ecology, 12 (3), 185-192.
Castellan, G., Angeletti, L., Montagna, P., Taviani, M., 2022. Drawing the borders of the mesophotic zone of the Mediterranean Sea using satellite data. Scientific Reports, 12 (1), 5585.
Cerrano, A., Bastari, B., Calcinai, C., Di Camillo, D., Pica, S. et al., 2019. Temperate mesophotic ecosystems: gaps and perspectives of an emerging conservation challenge for the Mediterranean Sea. The European Zoological Journal, 86 (1), 370-388.
Chambers, J., Cleveland, W., Kleiner, B., Tukey, P., 1983. Graphical Methods for Data Analysis. Wadsworth, 158-162.
Cicogna, F., Pronzato, R., 1985. A time–lapse photography equipment for the investigation of macrozoobenthos survey. Rapports et process-verbaux des reunion CIESM, 29 (6), 183.
Cleveland, W., McGill, R., 1984. Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association, 79 (387), 531-554.
CONISMA, 2003. Studio di fattibilità propedeutico all’istituzione dell’area marina protetta “Penisola della Maddalena – Capo Murro di Porco” Siracusa. Ministero dell’Ambiente & Comune di Siracusa Eds. Technical Report, 99 pp.
Coppari, M., Ferrier-Pagès, C., Castellano, M., Massa, F., Olivari, E. et al., 2019. Seasonal variation of the stable C and N isotopic composition of the mesophotic black coral Antipathella subpinnata (Ellis & Solander, 1786). Estuarine, Coastal and Shelf Science, 106520.
Cyr, F., van Haren, H., Mienis, F., Duineveld, G., Bourgault, D., 2016. On the influence of cold‐water coral mound size on flow hydrodynamics, and vice versa. Geophysical Research Letters, 43 (2), 775-783.
Davy, S.K., Lucas, I.A.N., Turner, J.R., 1996. Carbon budgets in temperate anthozoan-dinoflagellate symbiosis. Marine Biology, 126, 773-783.
De Clippele, L.H., Huvenne, V.A., Orejas, C., Lundälv, T., Fox, A. et al., 2018. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway. Coral Reefs, 37, 253-266.
Duchêne, J.C., 2017. Activity rhythm measurement in suspension feeders. p. 761-782. In: Marine Animal Forests. Rossi, S., Bramanti, L., Gori, A., Orejas, C. (Eds). Springer International Publishing, Cham.
Gori, A., Reynaud, S., Orejas, C., Ferrier-Pagès, C., 2015. The influence of flow velocity and temperature on zooplankton capture rates by the cold-water coral Dendrophyllia cornigera. Journal of Experimental Marine Biology and Ecology, 466, 92-97.
Häfker, N.S., Andreatta, G., Manzotti, A., Falciatore, A., Raible, F. et al., 2023. Rhythms and clocks in marine organisms. Annual Review of Marine Science, 15, 509-538.
Helmuth, B., Sebens, K., 1993. The influence of colony morphology and orientation to flow on particle capture by the scleractinian coral Agaricia agaricites (Linnaeus). Journal of Experimental Marine Biology and Ecology, 165 (2), 251-278.
Johnson, A.S., Sebens, K.P., 1993. Consequences of a flattened morphology: effects of flow on feeding rates of the scleractinian coral Meandrina meandrites. Marine Ecology Progress Series, 99, 99-114.
Kaandorp, J.A., 1999. Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Marine Biology, 134, 295-306.
Idan, T., Shefer, S., Feldstein, T., Ilan, M., 2021. New discoveries in Eastern Mediterranean mesophotic sponge grounds: updated checklist and description of three novel sponge species. Mediterranean Marine Science, 22 (2), 270-284.
La Barbera, M., 1984. Feeding currents and particle capture mechanisms in suspension feeding animals. American Zoologist, 24, 71-84.
León, A., Orejas, C., Veiga, A., Puerta, P., Lezzi, G. et al., 2019. The reproductive biology of the cold-water coral scleractinian Dendrophyllia cornigera (NE Atlantic). In: ATLAS 4th General Assembly, Mallorca (Spain), 1-5 April 2019.
Lesser, M.P., Slattery, M., Mobley, C.D., 2018. Biodiversity and functional ecology of mesophotic coral reefs. Annual Review of Ecology, Evolution, and Systematics, 49 (1), 49-71.
Li, S., Roger, L.M., Kumar, L., Lewinski, N.A., Klein-Seetharaman, J. et al., 2021. Digital image processing to detect subtle motion in stony coral. Scientific Reports, 11 (1), 1-9.
Li, S., Roger, L.M., Klein-Seetharaman, J., Lewinski, N.A., Yang, J., 2022. Spatiotemporal dynamics of coral polyps on a fluidic platform. Physical Review Applied, 18 (2), 024078.
McFarland, W., Wahl, C., Suchanek, T., McAlary, F., 1999. The behavior of animals around twilight with emphasis on coral reef communities. p. 583-628. In: Adaptive mechanisms in the ecology of vision. Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (Eds). Springer, Dordrecht.
Orejas, C., Gori, A., Jiménez, C., Rivera, J., Iacono, C.L. et al., 2017. First in situ documentation of a population of the coral Dendrophyllia ramea off Cyprus (Levantine Sea) and evidence of human impacts. Galaxea, Journal of Coral Reef Studies, 19 (1), 15-16.
Orejas, C., Gori, A., Jiménez, C., Rivera, J., Kamidis, N. et al., 2019a. Occurrence and distribution of the coral Dendrophyllia ramea in Cyprus insular shelf: Environmental setting and anthropogenic impacts. Deep Sea Research Part II, 164, 190-205. Orejas, C., Jiménez, C., Gori, A., Rivera, J., Lo Iacono, C. et al., 2019b. Corals of Aphrodite: Dendrophyllia ramea - Populations of Cyprus. p. 257-260. In: Mediterranean cold water corals: past, present and future, cap. 23, Orejas, C. & Jiménez, C. (Eds). Springer, Cham.
Oren, M., Tarrant, A.M., Alon, S., Simon-Blecher, N., Elbaz, I. et al., 2015. Profiling molecular and behavioral circadian rhythms in the non-symbiotic sea anemone Nematostella vectensis. Scientific Reports, 5 (1), 1-15. Parker, G.H., 1919. The Elementary Nervous System. Lippincott, Philadelphia, 227 pp.
Peirano, A., Bordone, A., Marini, S., Piazza, P., Schiaparelli, S., 2016. A simple time-lapse apparatus for monitoring macrozoobenthos activity in Antarctica. Antarctic Science, 28 (6), 473-474.
Peirano, A., Bordone, A., Corgnati, L.P., Marini, S., 2023. Timelapse recording of yearly activity of the sea star Odontaster validus and the sea urchin Sterechinus neumayeri in Tethys Bay (Ross Sea, Antarctica). Antarctic Science, 35 (1), 4-14.
Previati, M., Scinto, A., Cerrano, C., Osinga, R., 2010. Oxygen consumption in Mediterranean octocorals under different temperatures. Journal of Experimental Marine Biology and Ecology, 390 (1), 39-48.
Provenzani, C., Salvati, E., Santero, W., D’Ambrosi, A., Leonini, F. et al., 2019. In situ long term observation of Dendrophyllia ramea. p. 48. In: 5th European Conference on Scientific Diving, Sopot (Poland), 24-27 April 2019.
Purser, A., Orejas, C., Moje, A., Thomsen, L., 2014. The influence of flow velocity and suspended particulate concentration on net prey capture rates by the scleractinian coral Balanophyllia europaea (Scleractinia: Dendrophylliidae). Journal of the Marine Biological Association of the United Kingdom, 94, 687-696.
Reidenbach, M.A., Koseff, J.R., Monismith, S.G., Steinbuckc, J.V., Genin, A. 2006. The effects of waves and morphology on mass transfer within branched reef corals. Limnology and Oceanography, 51 (2), 1134-1141.
Reitzel, A. M., Tarrant, A. M., Levy, O., 2013. Circadian clocks in the Cnidaria: environmental entrainment, molecular regulation, and organismal outputs. Integrative and Comparative Biology, 53 (1), 118-130.
Reynaud, S., Ferrier-Pagès, C., 2019. Biology and Ecophysiology of Mediterranean Cold–Water Corals. In: Mediterranean cold water corals: past, present and future. p. 391- 404. Orejas, C. & Jiménez, C. (Eds). Springer, Cham.
Reynaud, S., Orejas, C., Campagnano, A., Rottier, C., Jemenez, C. et al., 2021. Dendrophylliidae cold-water corals in a warm ocean: The effect of exposure duration on their physiological response. Deep Sea Research Part II, 193, 104962.
Riedl, R., 1971. Water movement: General introduction. p. 1086-1088. In: Marine Ecology. O. Kinne (Ed.). J. Wiley & Sons, London.
Roberts, J.M., Wheeler, A.J., Freiwald, A., 2006. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science, 312, 543-547.
Robbins, R.E., Shick, J.M., 1980. Expansion-contraction behaviour in the sea anemone Metridium senile: environmental cues and energetic consequences. Nutrition in the Lower Metazoa, 101-116.
Salomidi, M., Zibrowius, H., Issaris, Y., Milionis, K., 2010. Dendrophyllia in Greek waters, Mediterranean Sea, with the first record of D. ramea (Cnidaria, Scleractinia) from the area. Mediterranean Marine Science, 11 (1), 189-194.
Salvati, E., Giusti, M., Canese, S., Esposito, V., Romeo, T. et al., 2021. New contribution on the distribution and ecology of Dendrophyllia ramea (Linnaeus, 1758): abundance hotspots off north-eastern Sicilian waters. Aquatic Conservation: Marine and Freshwater Ecosystems, 1-12.
Sanna, G., Büscher, J. V., Freiwald, A., 2023. Cold-water coral framework architecture is selectively shaped by bottom current flow. Coral Reefs, 42 (2), 483-495.
Scicchitano, G., Monaco, C., 2006. Grotte carsiche e linee di costa sommerse tra Capo Santa Panagia e Ognina (Siracusa, Sicilia sud-orientale). ltalian Journal of Quaternary Sciences, 19 (2), 187-194.
Sebens, K.P., DeRiemer, K., 1977. Diel cycles of expansion and contraction in coral reef anthozoans. Marine Biology, 43, 247-256.
Sorek, M., Levy, O., 2012. The effect of temperature compensation on the circadian rhythmicity of photosynthesis in Symbiodinium, coral-symbiotic alga. Scientific Reports, 2 (1), 1-8.
Thiem, Ø., Ravagnan, E., Fossa, J.H., Berntsen, J., 2006. Food supply mechanisms for cold-water corals along a continental shelf edge. Journal of Marine System, 26, 1481-1495.
Wijgerde, T., Spijkers, P., Karruppannan, E., Verreth, J.A.J., Osinga, R., 2012. Water flow affects zooplankton feeding by the scleractinian coral Galaxea fascicularis on a polyp and colony level. Journal of Marine Biology, 854849.
Wildish, D., Kristmanson, D., 1997. Benthic suspension feeders and flow. Cambridge University Press, Cambridge, 409.
Zibrowius, H., 1980. Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Memoires de l’Institut Oceanographique Fondation Albert 1er, Prince de Monaco, 11 (1), 169-172.
Most read articles by the same author(s)