Effects of spirulina (Arthrospira platensis) as feed additive of steers consuming high energy diets: growth performance and nutrient digestion


Published: Jul 10, 2022
Keywords:
spirulina feedlot cattle ruminal fermentation digestion performance
Alejandro Plascencia
https://orcid.org/0000-0003-2151-5372
Iván Guadalupe Martínez-Alvarez
https://orcid.org/0000-0003-0812-1336
Martín Montano
https://orcid.org/0000-0002-9682-0737
Alfredo Estrada-Angulo
https://orcid.org/0000-0001-9119-5162
Jesús David Urías-Estrada
https://orcid.org/0000-0001-6600-8417
Beatriz Isabel Castro-Pérez
Richard Avery Zinn
https://orcid.org/0000-0003-3014-3814
Abstract

Two trials were performed in order to evaluate the effects of spirulina platensis (SP) supplemented (0, 0.5, and 1.0% of diet DM) in high-energy diet on nutrient digestion and growth-performance of feedlot cattle. The dose of each treatment was top dressed and mixed directly with the basal diet at time of feeding. In Trial 1, six cannulated Holstein steers (281±2 kg) were used in a replicated 3×3 Latin square experiment. Supplemental SP did not affect ruminal and total tract nutrient digestion. Ruminal microbial efficiency (quadratic component, P=0.06), nitrogen efficiency (linear component, P=0.10) and ruminal pH (linear, P=0.06) tended decrease with SP supplementation, without effects on ruminal VFA or estimated methane production. In Trial 2, 108 medium-frame crossbred steers (182±1 kg) were used in a 211-d study to evaluate growth performance. Supplemental SP did not affect feed intake, but linearly tended (P=0.09) to decrease weight gain, gain efficiency, and estimated dietary net energy. Supplemental SP tended (P=0.08) to linearly increase steer morbidity. Effects of SP supplementation on carcass characteristics was non-appreciable, but tended (P=0.06) linearly decrease longissimus muscle area. It is concluded that low level spirulina supplementation (up to 1% of diet) did not appreciably affect nutrient digestion, ruminal fermentation, growth-performance or health of feedlot cattle fed a high-energy diet.

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
Author Biographies
Alejandro Plascencia, Universidad Autónoma de Occidente, Unidad Guasave, Sinaloa

Departamento de Ciencias Exactas y Naturales

Researcher

Iván Guadalupe Martínez-Alvarez, Universidad Autónoma de Occidente, Unidad Guasave, Sinaloa

Departamento de Ciencias Exactas y Naturales

Professor-Researcher

Martín Montano, Universidad Autónoma de Baja California, México

Instituto de Investigaciones en Ciencias Veterinarias

professor-researcher

Alfredo Estrada-Angulo, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa

Facultad de Medicina Veterinaria y Zootecnia

Professor-researcher

Jesús David Urías-Estrada, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa

Facultad de Medicina Veterinaria y Zootecnia

Professor-researcher

Beatriz Isabel Castro-Pérez, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa

Facultad de Medicina Veterinaria y Zootecnia

Professor-researcher

Richard Avery Zinn, University of California, Davis

Animal Science Department

Professor-Researcher

References
AOAC (2000) Official methods of analysis (17th ed) Assoc. Off. Anal. Chem. Gaithersburg, MD.
Amer SA (2016) Effect of Spirulina platensis as feed supplement on growth performance, immune response and antioxidant status of mono-sex Nile Tilapia (Oreochromis niloticus). Benha Vet. Med J 30:1-10.
Babadzhanov S, Abdusamatova N, Yusupova FM, Faizullaeva N, Mezhlumyan LG, Malikova M (2004) Chemical composition of Spirulina platensis cultivated in Uzbekistan. Chem Nat Compd 40: 276-279.
Becker EW (2007) Micro-algae as a source of protein. Biotech Adv. 25:207-210.
Bergen WG, Purser DB, Cline JH (1968) Effect of ration on the nutritive quality of rumen microbial protein. J Anim Sci 27:1497-1501.
Bezerra LR, Silva AMA, Azevedo SA, Mendes RS, Mangueira JM, Gomes AK (2010) Performance of Santa Ines lambs submitted to the use of artificial milk enriched with Spirulina platensis. Ciênc Anim Bras 11: 258–263.
Bonos E, E. Kasapidou E, Kargopoulos A, Karampampas A, Christaki E, Florou-Paneri P, Nikolakakis I (2016) Spirulina as a functional ingredient in broiler chicken diets. South Afr J Anim Sci 46:94-102.
Capelli B, Cysewski GR (2010) Potential health benefits of spirulina microalgae. Nutrafoods 9:19-26.
EL-Sabagh MR, Eldaim MA, Mahboub DH, Abdel-Daim M (2014) Effects of spirulina platensis algae on growth performance, antioxidative status and blood metabolites in fattening lambs. J Agric Sci 6:92-98.
Erickson GE, Bremer VR, Klopfestein TJ, Smith DR, Hanford KJ, Peterson RE, Burciaga-Robles LO, Faulkner DB, Krehbiel CR (2011) Relationship between morbidity and performance in feedlot cattle. Nebraska Beef Cattle Rpt 87-89.
FAO/WHO (1991) Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation, FAO. Food and Nutrition Paper 51. Rome: FAO.
Finamore A, Palmery M, Bensehaila S, Peluso I (2017) Antioxidant, immunomudaliting, and microbial-modulating activities of the sustainable and ecofriendly Spirulina. Oxid Med Cell Longev Art ID 3247528.
Gutierrez BH, Alvarez E, Arrizon AA, Carrasco R, Salinas-Chavira J, Zinn RA (2016) Influence of high-oil algae biomass as a feed intake and growth-performance enhancer in feedlot cattle during period of high ambient temperature. J Appl Anim Res 44:118-120.
Hill FN, Anderson DL (1958) Comparison of metabolizable energy and productive determinations with growing chicks. J Nutr 64:587-603.
Holman BWB, Malau-Aduli EO (2013) Spirulina as a livestock supplement and animal feed. Anim Phys Anim Nutr 97: 615-623.
Irsik M, Langemeier M, Schroeder T, Spire M, Roder JD (2006) Estimating the effects of animal health on the performance of feedlot cattle. Bov Pract 40:65-74.
Karkos PD, Leong SC, Karkos CD, Sivaji N, Assimakoppoulus DA (2011) Spirulina in clinical practice: Evidence-based human applications. Complement. Alter Med 1-4.
Moor VJ, Pieme CA, Biapa PC, Matip ME, Moukette B, Nzufo F, Nanfack P, Ngogang J (2016) Chemical composition of spirulina platensis of Nomayos-Yaounde (Cameroon). Annals Food Sci Technol 17:524-528.
Murphey CE, Hallett DK, Tyler WE, Pierce JC (1960) Estimating yields of retail cuts from beef carcasses. In: Proceedings of American Society of Animal Production, Chicago, IL.USA: pp. 1–12.
Norman MM, Carlson ZE, Hilscher FH, Erickson GE, Brodersen BW, Loy JD, Wilson JW, Rabe C, Watson AK (2018) Evaluation of the safety of an algae biomass as an ingredient for finishing cattle. Prof Anim Sci 34:618-630.
NRC (1984) Nutrient Requirements of Beef Cattle (6th Rev. ed.) National Academy Press, Washington, DC, USA.
NRC. 2000. Nutrient Requirements of Beef Cattle. Updated (7th Rev. ed.) National Academy Press, Washington, DC, USA.
Owens FN, Gardner BA (2000) A review of the impact of feedlot management and nutrition on carcass measurements of feedlot cattle. J Anim Sci 77 (Suppl E):1-18.
Panjaitan, T, Quigley SP, McLennan SR, Swain AJ, Poppi DP (2015) Spirulina (Spirulina platensis) algae supplementation increases microbial protein production and feed intake and decreases retention time of digesta in the rumen of cattle. Anim Prod Sci 55:535-543.
Parada, JL, Zulpa de Caire G, Zaccaro de Mulé MC, Storni de Cano MM (1998) Lactic acid bacteria growth promoters from Spirulina platensis. Int J Food Microbiol 45:225-228.
Ramadan MF, Asker MMS, Ibrahim ZK (2008) Functional bioactive compounds and biological activities of Spirulina platensis lipids. Czech J Food Sci 26:211-222.
SAS (2004). Statistical Analysis Software. Version 90 SAS Institute Inc. Cary, North Carolina, USA.
Stokes RS (2015) Evaluation of algae meal as a novel feedstuff for ruminants. Graduate Theses and Dissertations. 14909.
https://lib.dr.iastate.edu/etd/14909. Iowa State University, USA.
Schunicht OC, Booker CW, Jim GK, Guichon PT, Wildman BK, Hill BW (2003) Comparison of a multivalent viral vaccine program versus a univalent viral vaccine program on animal health, feedlot performance, and carcass characteristics of feedlot calves. Can Vet J 44:43-50.
Tayyab U, Novoa-Garrido M, Roleda MY, Lind V, Weisbjerg MR (2016) Ruminal and intestinal protein degradability of various seaweed species measured in situ in dairy cows. Anim Feed Sci Technol 213:44-54.
USDA (1997) United States Standards for Grading of Carcass Beef. Washington (DC): Agricultural Marketing Service, United States Dep. Agric.
Wild KJ, Steingab H, Rodehutscord M (2019) Variability of in vitro ruminal fermentation and nutritional value of cell‐disrupted and nondisrupted microalgae for ruminants. Bioenergy 11: 345-359.
Wolin MJ (1960) A theorical rumen fermentation balance. J Dairy Sci 43:1452-1459.
Zinn RA (1988) Comparative feeding value of supplemental fat in finishing diets for feedlot steers supplemented with and without monensin. J Anim Sci. 66:213-227.
Zinn RA (1990) Influence of steaming time on site of digestion of flaked corn in steers. J Anim Sci 68:776-781.
Zinn RA, Plascencia A (1993) Interaction of whole cottonseed and supplemental fat on digestive function in cattle. J Anim Sci 71:11-17.
Zinn RA, Barreras A, Owens FN, Plascencia A (2008) Performance by feedlot steers and heifers: ADG, mature weight, DMI and dietary energetics. J Anim Sci 86:1-10.
Zinn RA, Owens FN (1986) A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can J Anim Sci 66:157-166.
Zinn RA, Shen Y (1998) An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. J Anim Sci 76: 1280-1289.
Zotte AD, Sartori A, Bohatir P, Rémignon H, Ricci R (2013) Effect of dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on growth performance, apparent digestibility and health status of companion dwarf rabbits. Liv Sci 152: 182-191.
Most read articles by the same author(s)