Διαχείριση των Διαθέσιμων Κεφαλαίων των Ασφαλιστικών Ταμείων με τη Χρήση Νευρωνικών Δικτύων


Published: Jul 10, 2017
Keywords:
Social Security Neural Network model investing model Social policy financial Engineering
Κωνσταντίνος Μέμος
Σάββας Ρομπόλης
Abstract

The main thrust of the research focused on exploring and making effective use of an alternative method of available funds of the Social Security in our country which is based on using Neural Network model. In this research focuses on the management of available funds of the Social Security System, the Technical Neural Networks and the investing model Technical Neural Networks.

Article Details
  • Section
  • Articles
Downloads
Download data is not yet available.
Author Biographies
Κωνσταντίνος Μέμος, Πάντειο Πανεπιστήμιο
Υποψήφιος Διδάκτωρ, Τμήμα Κοινωνικής Πολιτικής, Πάντειο Πανεπιστήμιο
Σάββας Ρομπόλης, Πάντειο Πανεπιστήμιο
Ομότιμος Καθηγητής, Τμήμα Κοινωνικής Πολιτικής, Πάντειο Πανεπιστήμιο
References
Jingtao Yao, Chenw Lim Tan and Hean-Lee Poh (1998). “ Neural networks for technical analysis: A study on KLCI”, Theoretical and applied finance, vol2
Guoqiang Zhang, B. Eddy Patuwo, Michael Y.Hu (1997). “ Forecasting with artificial neural networks: The state of the art”, USA
B. Freisleben, Stock market prediction with backpropagation networks, Industrial and Engineering Applications of Artificial Intelligence and Expert System. 5th Interna-tional Conference, Paderborn, Germany (June 1992) 451-460.
S. Margarita, Genetic neural networks for financial markets: some results, ECAI’92, Vienna, Austria (1992) 211-21.
T. Plummer, Forecasting Financial Markets: A Technical Analysis and the Dynamic of Price, New York (1991)
H.-L. Poh, J. T. Yao and T. Jasic, Neural networks for the analysis and forecasting of advertising and promotion impact, Int. J. Intelligent Systems in Accounting, Finance and Management 7 (1998).
A. N. Refenes, A. Zapranis and G. Francis, Stock performance modeling using neu¬ral networks: a comparative study with regression models, Neural Network 5 (1994) 961-970.
T. Tanigawa and K. Kamijo, Stock price pattern matching system: dynamic program-ming neural network approach, IJCNN’92, Vol. 2, Baltimore, Maryland (June 1992).
S. Taylor, Modeling Financial Time Series, John Wiley & Sons (1986).
R. R. Trippi and E. Turban (eds), Neural Networks in Finance and Investing: Using Artificial Intelligence to Improve Real-world Performance, Irwin Professional Pub. (1996).
H. White, Artificial Neural Networks: Approximation and Learning Theory, Blackwell (1992).
J. T. Yao and H.-L. Poh, Equity forecasting: a case study on the KLSE index, Neural Networks in Financial Engineering, Proc. 3rd Int. Conf. on Neural Networks in the Capital Markets, Oct 1995, London, eds. A.-P N. Refenes, Y. Abu-Mostafa, J. Moody and A. Weigend, World Scientific (1996) 341-353.
Σ. Ρομπόλης , Οικονομική κρίση και κοινωνικό κράτος, επίκεντρο, Θες/νίκη 2012.
Σ. Ρομπόλης, Β. Μπέτσης, Αναλογιστική μελέτη 2013-2050, Αθήνα 2013.
Ρομπόλης Σ (1991) "Κοινωνική Ασφάλιση: Η διαρκής κρίση και οι προοπτιικές», εκδ. Παρατηρητής, Θεσσαλονίκη.
Π. Πέτρουλας, Σ. Ρομπόλης, Ε. Ξυδέας, Μ. Χλέτσος: Η Κοινωνική Ασφάλιση στην Ελλάδα: Η περίπτωση του ΙΚΑ, ΙΝΕ ΓΣΕΕ, Αθήνα, 1993
Most read articles by the same author(s)