| More

ΜΟΝΤΕΛΟΠΟΙΩΝΤΑΣ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑΤΙΣΤΙΚΟΥ ΣΥΛΛΟΓΙΣΜΟΥ

Views: 496 Downloads: 573
Έφη Παπαριστοδήμου (Efi Paparistodimou), Μαρία Μελετίου - Μαυροθέρη (Maria Meletiou- Mavrotheri), Ana Serrado Bayes

Περίληψη


Η συμβολή της μοντελοποίησης μέσω της αξιοποίησης δυναμικών στατιστικών πακέτων για την καλύτερη κατανόηση των στατιστικών εννοιών και την εκτίμηση της πρακτικής τους αξίας κρίνεται ως ιδιαίτερα σημαντική στη σύγχρονη βιβλιογραφία  (π.χ., Gil & Ben-Zvi, 2011). Η  εργασία εστιάζει στο πώς οι εκπαιδευτικοί ως μεταπτυχιακοί φοιτητές1 μοντελοποιούν προβλήματα στατιστικού συλλογισμού και παρουσιάζει τα αποτελέσματα έρευνας, η οποία πραγματοποιήθηκε στο πλαίσιο μεταπτυχιακού μαθήματος ποσοτικών προσεγγίσεων απευθυνόμενου σε υποψήφιους και εν ενεργεία εκπαιδευτικούς. Τα ευρήματα της έρευνας καταδεικνύουν ότι η άτυπη προσέγγιση της στατιστικής συμπερασματολογίας που υιοθετήθηκε στο μάθημα, η οποία επικεντρώθηκε στην μοντελοποίηση και προσομοίωση μέσω της χρήσης του λογισμικού δυναμικής στατιστικής TinkerPlots2®, συνέβαλε στην ανάπτυξη τόσο της στατιστικής συλλογιστικής των φοιτητών, όσο και του βαθμού εκτίμησης της πρακτικής αξίας της μοντελοποίησης στη διαδικασία λήψης αποφάσεων. Η δυνατότητα που προσφέρει το τεχνολογικό εργαλείο για την κατασκευή μοντέλων και στη συνέχεια την προσομοίωσή τους με σκοπό την επίλυση ρεαλιστικών προβλημάτων, βοήθησε τους φοιτητές-εκπαιδευτικούς να κατανοήσουν τη σχέση του μέρους και του όλου στα δεδομένα τους, την επίδραση του Νόμου των Μεγάλων Αριθμών και τη σύνδεση της θεωρητικής με την  εμπειρική πιθανότητα.

Λέξεις κλειδιά


Μοντελοποίηση; Δυναμικά Στατιστικά Εργαλεία; Επαγωγική Στατιστική

Πλήρες Κείμενο:

PDF

Αναφορές


Batanero, C., Henry, M., & Parzysz, B. (2005). The nature of chance and probability. In G. Jones (Ed.), Exploring probability in school: challenges for teaching and learning (pp. 16-42). Dordrecht: Kluwer.

Ben-Zvi, D. (2006). Scaffolding students’ informal inference and argumentation. In A. Rossman, & B. Chance (Eds.), Working Cooperatively in Statistics Education: Proceedings of the Seventh International Conference of Teaching Statistics (ICOTS-7), Salvador, Brazil.

Biehler, R., & Prömmel, A. (2010). Developing students' computer-supported simulation and modelling competencies by means of carefully designed working environments. In C. Reading (Ed.), Proceedings of the Eighth International Conference on Teaching Statistics (ICOTS-8), Ljubljana, Slovenia. Voorburg, The Netherlands: International Statistical Institute.

delMas, R. C., Garfield, J., Ooms, A., & Chance, B. (2007). Assessing students’ conceptual understanding after a first course in statistics. Statistics Education Research Journal, 6(2), 28-58.

Eichler, A., & Vogel, M. (2014). Three approaches for modelling situations with randomness. In E. J. Chernoff, & B.

Sriraman (Eds.), Probabilistic thinking (pp. 75-100). Dordrecht: Springer.

Erickson, T. (2006). Using simulation to learn about inference. In Rossman, A. & Chance, B. (Eds.), Working Cooperatively in Statistics Education: Proceedings of the Seventh International Conference of Teaching Statistics (ICOTS-7), Salvador, Brazil. Voorburg, The Netherlands: International Statistical Institute.

Erickson, T. (2013). Designing games for understanding in a data analysis environment. Technology Innovations in Statistics Education, 7(2).

Finzer, W. (2001). fathom dynamic statistics (v1.0) [Current version is 2.1]. Emeryville, CA: Key Curriculum Press.

Gardner, H., & Hudson, I. (1999). university students’ ability to apply statistical procedures. Journal of Statistics Education, 7(1). Online: www.amstat.org/publications/jse/secure/v7n1/gardner.cfm

Garfield, J., & Ahlgren, A. (1998). Difficulties in learning basic concepts in probability and statistics: implications for research. Journal for Research in Mathematics Education, 19, 44-63.

Garfield, J., & Ben-Zvi, D. (2008). Developing students' statistical reasoning: connecting research and teaching practice. New York: Springer.

Garfield, J., delMas, R., & Zieffler, A. (2010). Developing tertiary-level students’ statistical thinking through the use of model-eliciting activities. In C. Reading (Ed.), Data and context in statistics education: Towards an evidence-based society. Proceedings of the Eighth International Conference on Teaching Statistics (ICOTS8, July, 2010), Ljubljana, Slovenia. Voorburg, The Netherlands: International Statistical Institute. Online: www.stat.auckland.ac.nz/~iase/publications.php

Garfield, J., delMas, R., & Zieffler, A. (2012). Developing statistical modelers and thinking in an introductory, tertiary - level statistics course. ZDM – The International Journal on Mathematics Education, 44 (7), 883 – 898.

Gil, E., & Ben-Zvi, D. (2011). Explanations and context in the emergence of students’ informal inferential reasoning. Mathematical Thinking and Learning, 13, 87–108.

Graham, A. (2006). Developing thinking in statistics. London: Paul Chapman Publishing.

Konold, C, Harradine, A. & Kazak, S. (2007). Understanding distribution by modelling them, International Journal for Computers and Mathematical Learning, 12, 217-230.

Konold, C., & Lehrer, R. (2008). Technology and mathematics education: An essay in honor of Jim Kaput. In L. D. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 49–72). New York, NY: Routledge.

Konold, C., & Miller, C. D. (2005). TinkerPlots: dynamic data exploration (v1.0) [Current version is 2.1]. Emeryville, CA: Key Curriculum Press.

Konold, C., & Miller, C. (2011). TinkerPlots (Version v2.0) [Computer software]. Emeryville, CA: Key Curriculum Press.

Lee, H. (2013). Quantitative reasoning in digital world: laying the pebbles for future research frontiers. In R.L. Mayes & L.L. Hatfield (Eds.), Quantitative reasoning in mathematics and science education: Papers from an international STEM research symposium, WISDOM e Mongraph # 3 (pp. 65-82). Laramie, Wyoming: University of Wyoming College of Education.

Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 591-646). Mahwah, NJ: Lawrence Erlbaum.

Meletiou-Mavrotheris, M., and Paparistodemou, E. (2015). Developing young learners’ reasoning about samples and sampling in the context of informal inferences. Educational Studies in Mathematics, 88(3), 385-404.

Murtonen, M., & Lehtinen, E. (2003). Difficulties experienced by education and sociology students in quantititative methods courses. Studies in Higher Education, 28 (2), 171-185.

Paparistodemou, E., & Meletiou-Mavrotheris, M. (2008). Enhancing reasoning about statistical inference in 8 year-old students. Statistics Education Research Journal, 7 (2), 83–106.

Paparistodemou, E., Noss, R., & Pratt, D. (2008). The interplay between fairness and randomness in a spatial computer game. International Journal of Computers for Mathematical Learning, 13(2), 89–110.

Pratt, D. (2011). Re-connecting probability and reasoning about data in secondary school teaching. In Proceedings of the 58th World Statistics Conference of the International Statistical Institute (pp. 880-899), Dublin Ireland.

Rubin, A., Hammerman, J., & Konold, C. (2006). Exploring informal inference with interactive visualization software. In A. Rossman, & B. Chance (Eds.), Working Cooperatively in Statistics Education: Proceedings of the Seventh International Conference of Teaching Statistics (ICOTS-7), Salvador, Brazil.

Serrado, B., Meletiou-Mavrotheris, M., and Paparistodemou, E. (2017). A study on statistical technological and pedagogical content knowledge on an innovative course on quantitative research methods. In G. Aldon, F. Hitt, L. Bazzini, and U. Gellert (Eds.), Mathematics and technology (pp. 467-494). Springer.

Στυλιανού, Δ., & Μελετίου-Μαυροθέρη, Μ. (2003). Δυναμικά λογισμικά: νέεσ προοπτικέσ για τη χρήση τεχνολογίασ στη διδασκαλία των μαθηματικών. Σύγχρονη Εκπαίδευση, 132, 27-37.

Wild, C., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry (with discussion). International Statistical Review, 67 (3), 223-265.

Zieffler, A., delMas, R., & Garfield, J. (2014). The symbiotic, mutualistic relationship between modelling and simulation in developing students’ statistical reasoning about inference and uncertainty. In K. Makar, B. de Sousa, & R. Gould (Eds.), Sustainability in statistics education. Proceedings of the Ninth International Conference on Teaching Statistics (ICOTS9, July, 2014), Flagstaff, Arizona, USA. Voorburg, The Netherlands: International Statistical Institute. Online: www.iase-web.org.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.


Copyright (c) 2017 ΕΦΗ ΠΑΠΑΡΙΣΤΟΔΗΜΟΥ, ΜΑΡΙΑ ΜΕΛΕΤΙΟΥ- ΜΑΥΡΟΘΕΣΗ, ANNA SERRADO BAYES

Creative Commons License
Η χρήση του περιεχομένου καθορίζεται από την άδειαCreative Commons Attribution 4.0 International License.