HIGH SCHOOL STUDENTS USING DYNAMIC GEOMETRY TOOLS TO UNDERSTAND QUADRILATERAL PROPERTIES AND RELATIONSHIPS


Published: Oct 9, 2020
Keywords:
construction of shapes tool use geometrical problem solving
Ελένη Μαρκοπούλου (Eleni Markopoulou)
Abstract

The present study investigated the effectiveness of using Dynamic Geometry tools with Geogebra software in relation to the use of traditional tools to understand quadrilateral properties and relationships and to solve geometrical problems. The participants were students of Grade 10, who were divided into eight pairs based on their cognitive and perceptual levels of quadrilateral and engaged in activities involving constructions, finding quadruped species, geometrical problems, and questions about quadrilateral properties and relationships. In the activities the 4 pairs used the software and the rest used the traditional tools. The results of the study showed that students who worked with the software understood the properties and relationships of quadrilateral better and solved geometric problems more easily.

Article Details
  • Section
  • Young Researchers
Downloads
Download data is not yet available.
Author Biography
Ελένη Μαρκοπούλου (Eleni Markopoulou), University of Western Macedonia
Post Graduate Master Program of Mathematics Education
References
Christou, C., Mousoulides, N., Pittalis, M., & Pitta-Pantazi, D. (2005).Problem solving and problem posing in a dynamic geometry environment. The Mathematics Enthusiast, 2(2), 125-143.Retrieved from http://scholarworks.umt.edu/tme/vol2/iss2/6/
Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processings. In Exploiting mental imagery with computers in mathematics education (pp. 142-157). Springer, Berlin, Heidelberg.https://doi.org/10.1007/978-3-642-57771-0_10
Gawlick, T. (2005).Connecting arguments to actions - Dynamic geometry as means for the attainment of higher van Hiele levels. ZDM. International Journal on Mathematics Education, 37(5), 361-370.https://doi.org/10.1007/s11858-005-0024-2
Han, H. (2007). Middle school students' quadrilateral learning: A comparison study (pp. 1-188). University of Minnesota.
Healy, L., &Hoyles, C. (2002). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 6(3), 235-256.https://doi.org/10.1023/A:1013305627916
Heid, M. K. (1997).The technological revolution and the reform of school mathematics. American Journal of Education, 106(1), 5-61.
Hölzl, R. (1996). How does ‘dragging’ affect the learning of geometry. International Journal of Computers for Mathematical Learning, 1(2), 169-187.https://doi.org/10.1007/BF00571077
Laborde, C. (1989). L'enseignement de la géométrie en tant que terrain d'exploration de phénomènes didactiques. Publications mathématiques et informatique de Rennes, (S6), 9-11.
Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM. International Journal on Mathematics Education, 43(3), 325-336.https://doi.org/10.1007/s11858-011-0329-2
Mariotti, M. A. (2002).Justifying and proving in the Cabri environment. International Journal of Computers for Mathematical Learning, 6(3), 257-281.https://doi.org/10.1023/A:1013357611987
Suwito, A., Yuwono, I., Parta, I. N., Irawati, S., &Oktavianingtyas, E. (2016). Solving Geometric Problems by Using Algebraic Representation for Junior High School Level 3 in Van Hiele at Geometric Thinking Level. International Education Studies, 9(10), 27-33.https://doi.org/10.5539/ies.v9n10p27
Τζεκάκη, Μ. (1991). Γεωμετρικές δραστηριότητες στο Γυμνάσιο: τι συμβόλαιο υπογράφουμε; Ανακοίνωση στο 8ο Πανελλήνιο Συνέδριο Ε.Μ.Ε. Θεσσαλονίκη.
Τζεκακη, Μ. (1992). Αξιοποίηση του Η/Υ σε θέματα Γεωμετρίας. Στο Μ. Μεϊμάρης& Φ, Καλαβάσης (εκδ.), Θέματα Διδακτικής των Μαθηματικών (σσ. 115 - 128), Αθήνα, Προτάσεις.
Van Hiele, P. M. (1999). Developing geometric thinking through activities that begin with play. Teaching children mathematics, 6, 310-316.
Yerushalmy, M. & Chazan D. (1990). Overcoming visual obstacles with the aid of the Supposer. EducationalStudiesinMathematics, 21(3), 199–219. https://doi.org/10.1007/BF00305090