| More


Views: 128 Downloads: 86
A.K. Adamaki, G. M. Tsaklidis, E. E. Papadimitriou, V. G Karakostas
A.K. Adamaki, G. M. Tsaklidis, E. E. Papadimitriou, V. G Karakostas


Estimation of the seismicity rate changes caused by a major earthquake is based upon the assumption that the earthquake occurrence can be described by stochastic processes. Three stochastic models are applied to the data, i.e. the homogeneous Poisson model, the non-homogeneous Poisson model with two different rate functions, and the Autoregressive model AR(2). The two latter models seem to be adequate to properly simulate the earthquake production in a given area. The identification of the model which best fits the data, enables the estimations of the seismicity rate changes and the numbers of the earthquakes following a specific main shock.


Seismicity rates; induced seismicity; Skyros aftershock sequence;

Full Text:



Felzer, K.R., Abercombie, R.E., and Brodsky, E.E. (2003), Testing the stress shadow hypothesis, EOS

Trans. AGU 84(46), Fall Meet. Suppl., Abstract S31A–04.

Gomberg, J., Reasenberg, P.A., Bodin, P., and Harris, R.A. (2001), Earthquake Triggering by Seismic

Waves Following the Landers and Hector Mine Earthquakes, Nature 411, 462–466.

Karakostas, V.G., Papadimitriou, E.E., Karakaisis, G.F., Papazachos, C.B., Scordilis, E.M., Vargemezis,

G., and Aidona, E. (2003), The 2001 Skyros, Northern Aegean, Greece, earthquake se quence: offfault

aftershocks, tectonic implications, and seismicity triggering, Geophys. Res. 30,


Kilb, D., Gomberg, J., and Bodin, P. (2000), Triggering of Earthquake Aftershocks by Dynamic Stresses,

Nature 408, 570–574.

Marsan, D. (2003), Triggering of Seismicity at Short Timescales Following Californian Earthquakes, J.

Geophys. Res. 108, doi:10.1029/2002JB001946.

Marsan, D., and Nalbant, S. S. (2005), Methods for measuring seismicity rate changes: Areview and a

study of how the Mw 7.3 Landers earthquake affected the aftershock sequence of the Mw 6.1 Joshua

Tree earthquake, Pure Appl. Geophys., 162, 1151–1185.

Matthews, M.V. and Reasenberg, P.A. (1998), Statistical Methods for Investigating Quiscence and other

Temporal Seismicity Patterns, Pure Appl. Geophys. 126, 357–372.

Ogata, Y. (1988), Statistical Models for Earthquake Occurrences and Residual Analysis for Point

Processes, J. Am. Stat. Ass. 83, 9–27.

Ogata, Y. (1999), Seismicity Analysis through Point-process Modeling: A Review, Pure Appl. Geophys.

, 471–507.

Ogata, Y. and Shimazaki, K. (1984), Transition from Aftershock to Normal Activity: The 1965 Rat Islands

Earthquake Aftershock Sequence, Bull. Seismol. Soc. Am. 74, 1757–1765.

Toda, S., Stein, R.S., and Takeshi, S. (2002), Evidence from the AD 2000 Izu Islands Earthquake Swarm

that Stressing Rate Governs Seismicity, Nature 419, 58–61.

Toda, S., Stein, R.S., Reasenberg, P.A., Dieterich, J.H., and Yoshida, A. (1998), Stress Transferred by the

Mw=6.9 Kobe, Japan, Shock: Effect on Aftershocks and Future Earthquake Probabilities, J.

Geophys. Res. 103, 24543–24565.

Utsu, T. (1970), Aftershocks and Earthquake Statistics (II)-Further Investigation of Aftershicks and other

Earthquake Sequences Based on a New Classification of Earthquake Sequences, J. Fac. Sei., Hokkaido

University, Ser. VII, 3, 197–266.

Vere–Jones, D., Statistical Methods for the Description and Display of Earthquake Catalogs. In Statistics

in the Environmental and Earth Sciences (eds. Walden A.T. and Guthorp P.) (Edward Arnold Publisher

, pp. 220–246.

Woessner, J., Hauksson, E., Wiemer, S., and Neukomm, S. (2004), The 1997 Kagoshima (Japan) Earthquake

Doublet: A Quantitative Analysis of Aftershock Rate Changes, Geophys. Res. Lett. 31,

doi:10.1029/2003 GL018858.

Wyss, M. and Wiemer, S. (2000), Change in the Probaqbility for Earthquakes in Southern California due

to the Landers Magnitude 7.3 Earthquake, Science 290, 1334–1338.


  • There are currently no refbacks.

Copyright (c) 2017 A.K. Adamaki, G. M. Tsaklidis, E. E. Papadimitriou, V. G Karakostas

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.