Early-Middle Miocene from Kotaphi hill section (Nicosia, Cyprus): preliminary biostratigraphy and paleoceanographic implications


M. Athanasiou
M. Triantaphyllou
M. Dimiza
A. Gogou
I. Bouloubassi
E. Tsiolakis
G. Theodorou
Résumé

Calcareous nannofossil biostratigraphy from Kotaphi Hill section allowed not only the biostratigraphic zonation of the Miocene units but also provided evidence for a distinct warm phase known as the Middle Miocene Climate Optimum (MMCO). Kotaphi Hill section is located in Agrokipia village (Nicosia region, Cyprus) and consists of cyclic marine deposits of the Pakhna Formation. High resolution sampling has been conducted and 84 samples were collected. Preliminary results indicated that several important calcareous nannofossil events can be consistently recognized along the studied section. High abundances of Discoaster druggii and Highest occurrence (HO) of Sphenolithus procerus suggest the presence of NN2 biozone while, LO of Sphenolithus belemnos has been used to recognize the base of biozone NN3. Upwards, Lowest Common Occurrence (LCO) of Sphenolithus heteromorphus marked the NN3-4 boundary-level. Biozone NN4 in Kotaphi Hill section is featured by high abundance of S. heteromorphus whereas total absence of the species together with the LO of Helicosphaera walbedorfensis mark the Paracme Beginning (PB) of S. heteromorphus interval. High abundance of warm indicators such as Discoasterids, S. heteromorphus, S. moriformis and Helicosphaera carteri observed in our material may partly reflect the warm phase of MMCO. Key words: Agrokipia village, Pakhna Formation, Cyprus, Sphenolithus heteromorphus, Middle Miocene Climate Optimum.

Article Details
  • Rubrique
  • Palaeontology, Stratigraphy and Sedimentology
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Aubry M.P. 1984, 1988, 1989, 1990, 1999. Handbook of Cenozoic Calcareous Nannoplankton, Vol. 1-5, Micropress, American Museum of Natural History, New York.
Bukry D., 1972. Coccolith stratigraphy Leg 1, Init. Rep. DSDP 14, 487–494.
Coccioni R., Montanari A., Fornaciari E., Rio D. and Zevenboom D. 1997. Potential integrated stratigraphy of the Aquitanian to Upper Burdigalian section at Santa Croce di Arcevia (NE Apennines, Italy), in: Montanari, A., Odin, G.S., Coccioni, R., (Eds), Mioc. Stratigr. An
Integrated Approach, pp. 275–295.
Di Stefano A., Foresi L.M., Lirer F., Iaccarino S.M., Turco E., Amore F.O., Mazzei R., Morabito S., Salvatorini G. and Abdul Aziz H. 2008. Calcareous plankton high resolution bio–magnetostratigraphy for the Langhian of the Mediterranean area, Riv. Ιtal. Paleontol.Stratigr., 114(1), 51–76.
Di Stefano A., Verducci M., Cascella A. and Iaccarino S.M. 2011. Calcareous plankton events at the Early/MiddleMiocene transition of DSDP Hole 608: comparison with Mediterranean successions for the definition of the Langhian GSSP, Stratigr., 8, 89–110.
Follows E.J. and Robertson A.H.F., 1990. Sedimentology and structural setting of Miocene reefal limestones in Cyprus, in: Moores, E., et al., (Eds), Ophiolites and Oceanic Lithosphere, Proc. Int, Symp., Nicosia, Cyprus, Oct. 1987, pp. 207–215.
Fornaciari E. and Rio D. 1996. Latest Oligocene to early Middle Miocene quantitative Calcareous Nannofossil Biostratigraphy in the Mediterranean region, Micropaleont., 42 (1), 1–36.
Fornaciari E., Di Stefano A., Rio D. and Negri A., 1996. Middle Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region. Micropaleont., 42 (1), 37–63.
Hsü K.J., 1973. The desiccated deep basin model for the Messinian events, in: Drooger, C.W., (Ed.), Messinian Events in the Mediterranean, North-Holland, Amsterdam, pp. 60-70.
Hüsing S.K., Cascella A., Hilgen F.J., Krijgsman W., Kuiper K.F., Turco E. and Wilson D. 2010. Astrochronology of the Mediterranean Langhian between 15.29 and 14.17 Ma, Earth Planet. Sci. Lett., 290, 254–269.
Ivanov D., Ashraf A.R., Mosbrugger V. and Palamarev E. 2002. Palynological evidence for Miocene climate change in the Forecarpathian Basin (Central Paratethys, NW Bulgaria), Palaeogeogr., Palaeoclimatol., Palaeoecol., 178, 19–37.
Jiménez-Moreno G. 2006. Progressive substitution of a subtropical forest for a temperate one during the middle Miocene climate cooling in Central Europe according to palynological data from cores Tengelic-2 and Hidas-53 (Pannonian Basin, Hungary), Review of Palaeobot. and Palynol., 142, 1–14.
Lourens L., Hilgen F., Shackleton N.J., Laskar J. and Wilson J. 2004. The Neogene period, in: Gradstein, F.M., et al., (Eds), A Geologic Time Scale 2004, Cambridge University Press, pp. 409–440.
Martini E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci, A., (Ed.), Proceedings of the Second International Conference on Planktonic Microfossils, Roma, Rome, Ed. Tecnosci, vol. 2, pp. 739–785.
Melinte M.C. 2005. Oligocene palaeoenvironmental changes in the Romanian Carpathians, revealed by calcareous nannofossils, in: Tyszka, J., Oliwkiewicz-Miklasinska, M., Gedl, P.,Kaminski, M.A., (Eds), Methods and Applications in Micropalaeont.. Studia Geologica
Polonica, vol. 124, pp. 341–352.
Negri A. and Villa G., 2000. Calcareous nannofossil biostratigraphy, biochronology and paleoecology at the Tortonian/Messinian boundary of the Faneromeni section (Crete), Palaeogeog. Palaeoclim., Palaeoecol., 156, 195–209.
Olafsson G. 1989. Quantitative calcareous nannofossil biostratigraphy of upper Oligocene to Middle Miocene sediment from ODP hole 667A and Middle Miocene sediments from DSDP Site 754, Proc. ODP Sci. Results, 108, 9–22.
Olafsson G. 1991. Quantitative calcareous nannofossil biostratigraphy and biochronology of early through late Miocene sediments from DSDP Hole 608, Medd. Stockholm Univ. Inst. Geol. Geok., 203 (4), 28 pp.
Perch-Nielsen K. 1985. Cenozoic calcareous nannofossils, in: Bolli, H.M., Saunders, J.B., Perch-Nielsen, K., (Eds), Plankt. Stratigr., Cambridge Earth Science Series, pp. 427–554.
Raffi I., Mozzato C.A., Fornaciari E., Hilgen F.J. and Rio D. 2003. Late Miocene calcareous nannofossil biostratigraphy and astrobiochronology for the Mediterranean region, Micropaleontol. 49, 1–26.
Raffi I., Backman J., Fornaciari E., Pälike H., Rio D., Lourens L. and Hilgen F. 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years, Quarter. Scien. Rev., 25, 3113–3137
Rıo D., Fornacıarı E. and Raffı I. 1990a. Late Oligocene through Early Pleistocene calcareous nannofossils from western equatorial Indian Ocean (Leg 115), Proceedings of the Ocean Drilling Program, Scientific Results, 115, 175–235.
Rio D., Raffi I. and Villa G. 1990b. Pliocene–Pleistocene calcareous nannofossil distribution patterns in the Western Mediterranean, Proc. ODP Sci. Results, 107, 513–533.
Robertson A.H.F. 1976. Pelagic chalks and calciturbidites from the Lower Tertiary of the Troodos Massif, Cyprus, J. Sediment. Petrol., 46, 1007–1016.
Robertson A.H.F., Eaton S., Follows E.J. and McCallum J.E. 1991. The role of local tectonics versus global sea-level change in the Neogene (Miocene-Pliocene) evolution of the Cyprus active margin. In: D.I.M. MacDonald (Editor), Sedimentation, Tectonics and Eustacy, Int. Assoc. Sedimentol., Spec. Publ., 12, 331–372.
Robinson P.T. and Malpas J. 1990. The Troodos ophiolite of Cyprus: new perspectives on its origin and emplacement, in: Malpas, J, (Ed.), Ophiolites–oceanic crust analogues, Proceedings of the Troodos 1987, Symposium, Nicosia, Cyprus Geological Survey, pp. 13–26
Rouchy J.M., Orszag-Sperber F., Blanc-Valleron M-M., Pierre C., Rivière M., Combourieu-Nebout N. and Panayides I. 2001. Paleoenvironmental changes at the Messinian– Pliocene boundary in the Eastern Mediterranean (Southern Cyprus basins): significance of the Messinian Lago–Mare, Sedimentol. Geol., 145, 93–117.
Takayama T. and Sato T. 1985. Coccolith biostratigraphy of the North Atlantic Ocean, Deep Sea Drilling Project Leg 94, in: Ruddiman, W.F., Kidd, R.B., Thomas, E., et al., (Eds), Initial Reports of Deep Sea Drilling Project, vol. 94, pp. 651-702.
Zachos J.C., Pagani M., Sloan L., Thomas E. and Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693.
Articles les plus lus par le même auteur ou la même autrice