Ground deformation and fault modeling of the 2016 sequence (24 Aug. – 30 Oct.) in central Apennines (Central Italy)


Spyros Pavlides
https://orcid.org/0000-0002-8715-893X
Alexandros Chatzipetros
https://orcid.org/0000-0002-5870-6095
George Papathanasiou
George Georgiadis
Sotiris Sboras
Sotiris Valkaniotis
Résumé
A chain fault reactivation took place in central Apennines, from August 24 to October 30, 2016, producing five moderate-to-strong earthquakes ranging from Mw5.5 to Mw6.6. This paper presents the results from the study of the ground co-seismic ruptures around the Monte Vettore and Vettoretto, and Norcia. Surface co-seismic ruptures, were observed in the Vettore and Vettoretto segment of the fault for some kilometers (~7 km) in the August earthquakes, which were partly re-activated  and  expanded  northward  during  the  October  earthquakes.  Ruptures  with  5-15  cm displacements are observed both in scree and weathered mantle (elluvium) and the bedrock, mainly fragmented carbonate rocks with small tectonic surfaces. After the October seismic sequence the co-seismic displacement doubled and reached more than 50cm. Oblique low-altitude aerial images were acquired at several sites using a UAV and 3D models were constructed using photogrammetric extrapolation. Numerous observed and mapped rock falls, slides of earth-materials etc, occur mainly along the mountain roads, on artificial slopes. They were studied with preliminary mapping from satellite imagery, and examples are presented of large landslides in the epicentral region with pre and after- the earthquake images. The first four events are associated with four individual fault segments respectively, all aligned along the mountain-fronts of Mt Gorzano and Mt Vettore. The last fifth and strongest event was the result of linkage and breaching of the previous fault segments. We modelled the fault segments intofive seismogenic sources in order to calculate the post-sequence static stress changes produced by the five seismogenic sources (or source faults) to the surrounding faults (receiver faults). Our results suggest possible triggering effects for neighbouring faults located along the strike of the source faults and delay effects for faults which are directly located either on the footwall or hanging-wall.
Article Details
  • Rubrique
  • Neotectonics and Geomorphology
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Aki, K. (1966). Generation and propagation of G-waves from the Niigata earthquake of June 16, 1964. 2. Estimation of earthquake movement, released energy and stress-strain drop from G spectrum. Bull. Earthq. Res. Inst., 44, 23-88.
Aringoli, D., Farabollini, P., Giacopetti, M., Materazzi, M., Paggi, S., Pambianchi, G., Pierantoni, P.P., Pistolesi, E., Pitts, A. & Tondi, E. (2016). The August 24th 2016 Accumoli earthquake: surfacefaulting and Deep-Seated Gravitational Slope Deformation (DSGSD) in the Monte tore area. Annals of Geophysics, 59, Fast Track 5.
Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., Tiberti, M.M. & Boschi, E. (2008). The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy's earthquake geology. Tectonophysics, 453(1), 20-43.
Blumetti A. M., Dramis F., & Michetti A. M., 1993. Fault-generated mountain fronts in the central Apennines (Central Italy): Geomorphological features and seismotectonic implications. Earth Surface Processes and Landforms, 18(3), 203-223.
Boncio P. & Lavecchia G., 2000. A structural model for active extension in Central Italy. Journal of Geodynamics, 29(3), 233-244.
Boncio P., Lavecchia G., Milana G. & Rozzi B., 2004. Seismogenesis in Central Apennines, Italy: an integrated analysis of minor earthquake sequences and structural data in the Amatrice-Campotosto area. Annals of Geophysics, 47(6), 1723-1742.
Borre K., Cacon S., Cello G., Kontny B., Kostak B., Andersen H.L., Moratti G., Piccardi L., Stemberk J., Tondi E. & Vilimek V., 2003. The COST project in Italy: analysis and monitoring of seismogenic faults in the Gargano and Norcia areas (central-southern Apennines, Italy). Journal of 15 Geodynamics, 36(1), 3-18.
Butler R. W., Tavarnelli E. & Grasso M., 2006. Structural inheritance in mountain belts: an Alpine–Apennine perspective. Journal of Structural Geology, 28(11), 1893-1908.
Calamita F., & Pizzi A., 1992. Tettonica quaternaria nella dorsale appenninica umbro-marchigiana e bacini intrappenninici associati. Studi Geologici Camerti, Vol. Spec., 17-25.
Calamita F. & Pizzi A., 1994. Recent and active extensional tectonics in the southern Umbro-Marchean Apennines (Central Italy). Mem. Soc. Geol. It, 48, 541-548.
Calamita F., Pizzi A., & Roscioni M., 1992. I “fasci” di faglie recenti ed attive di M. Vettore-M. Bove e di M. Castello-M. Cardosa (Appennino umbro-marchigiano). Studi Geologici Camerti, 92(1), 81-95.
Calamita F., Coltorti M., Farabollini P., & Pizzi A.,1994. Le faglie normali quaternarie nella dorsale appenninica umbro-marchigiana: proposta di un modello di tettonica di inversione. Studi Geologici Camerti, Vol. Spec. CROP, 18, 211-225.
Carafa M., & Bird P., 2016. Improving deformation models by discounting transient signals in geodetic data: 2. Geodetic data, stress directions, and long-term strain rates in Italy. Journal of Geophysical Research: Solid Earth, 121(7), 5557-5575.
Centamore E., Adamoli L., Berti D., Bigi G., Casnedi R., Cantalamessa G., Fumanti F., Morelli C., Micarelli A., Ridolfi M., Salvucci R., Chiocchini M., Mancinelli A., Potetti M. & Chiocchini U., 1992. Carta geologica dei bacini della Laga e del Cellino e dei rilievi carbonatici circostanti (Marche meridionali, Lazio nord orientale, Abruzzo settentrionale). S.E.L.C.A., Firenze
DISS Working Group, 2015. Database of Individual Seismogenic Sources (DISS), Version 3.2.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, Istituto Nazionale di Geofisica e Vulcanologia; DOI:10.6092/INGV.IT-DISS3.2.0.
EMERGEO, W.G.: Pucci, S., De Martini, P. M., Civico, R., Nappi, R., et al. (2016). Coseismic effects of the 2016 Amatrice seismic sequence: first geological results. Annals of Geophysics, 59, Fast Track 5.
Fortunato C., Martino S., Prestininzi A., Romeo R.W., Fantini A. and Sanandreas P., 2012. New release of the Italian catalogue of earthquake-induced ground failures (CEDIT). Italian Journal of Engineering Geology and Environment, DOI: 10.4408/IJEGE.2012-02.O-05.
Galadini F., & Galli P., 2000. Active tectonics in the central Apennines (Italy)–input data for seismic hazard assessment. Natural Hazards, 22(3), 225-268.
Galadini F., Galli P., & Moro M., 2003. Paleoseismology of silent faults in the central Apennines (Italy): the Campo Imperatore fault (Gran Sasso Range fault system). Annals of Geophysics, 46(5), 815-836.
Galli P., Galadini F., & Calzoni F., 2005. Surface faulting in Norcia (central Italy): a paleoseismological perspective”. Tectonophysics, 403(1), 117-130.
GSI – Geospatial Information Authority of Japan (2016). Crustal Deformation Observed by Synthetic Aperture Radar (SAR). Online article and data at http://www.gsi.go.jp/cais/topic160826-index-e.html.
Gruppo di lavoro IREA-CNR & INGV (2016). Sequenza sismica di Amatrice: aggiornamento delle analisi interferometriche satellitari e modelli di sorgente, DOI: 10.5281/zenodo.61682.
Hanks T.C., & Kanamori H., 1979. A Moment Magnitude Scale. J. Geophys. Res., 84(B5), 2348-2350.
Hodgkinson K. M., Stein R. S., & King G. C., 1996. The 1954 Rainbow Mountain‐Fairview ‐Dixie Valley earthquakes: A triggered normal faulting sequence. Journal of Geophysical Research: Solid Earth, 101(B11), 25459-25471.
Huang M. H., Fielding E. J., Liang C., Milillo P., Bekaert D., Dreger D. & Salzer J., 2017. deformation and triggered landslides of the 2016 Mw 6.2 Amatrice earthquake in Italy. Geophysical Research Letters, 44, doi:10.1002/2016GL071687.
IREA-CNR & INGV (2017) Sequenza sismica del Centro Italia 2016-2017: aggiornamento delle analisi InSAR e modello preliminare di sorgente per gli eventi del 18/1/17. Zenodo. http://doi.org/10.5281/zenodo.266966
ITHACA (2000). ITHACA Italy Hazard from Capable Faults: a database of active faults of the Italian onshore territory. A.M. Michetti, L. Serva and E. Vittori (eds.), CD-ROM and explication notes, ANPA; the updated version of the database is available online at http://www.isprambiente.gov.it/site/en-GB/Projects/ITaly_HAzards_from_CApable_faulting/default.html.
King G. C., Stein R. S. & Lin J., 1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953.
Malinverno A. & Ryan W. B., 1986. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics, 5(2), 227-245.
Marinkovic P., & Larsen Y., 2016. Mapping and analysis of the Central Italy Earthquake (2016) with Sentinel-1 A/B interferometry [Dataset]. Zenodo. http://doi.org/10.5281/zenodo.61133.
Martino S., F. Bozzano, P. Caporossi, M. Della Seta, C. Esposito, A. Fantini, M. Fiorucci, R.Iannucci, G.M. Marmoni: “Landslides triggered by the August 24, 2016 (Mw 6.0) Amatrice earthquake (Italy): data survey and inventorying”;
Mariucci M. T., & Montone P., 2016. Contemporary stress field in the area of the 2016 Amatrice seismic sequence (central Italy). Annals of Geophysics, 59, Fast Track 5.
Michele M., Di Stefano R., Chiaraluce L., Cattaneo M., De Gori P., Monachesi G., Latorre D., Marzorati S., Valoroso L., Ladina C. & Chiarabba C., 2016. The Amatrice 2016 seismic sequence: a preliminary look at the mainshock and aftershocks distribution. Annals of Geophysics, 59, Fast Track 5.
Okada Y., 1992. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018-1040.
Pace B., Peruzza L., Lavecchia G., & Boncio P., 2006. Layered seismogenic source model and probabilistic seismic-hazard analyses in central Italy. Bulletin of the Seismological Society of America, 96(1), 107-132.
Pauselli C., Federico C., Frigeri A., Orosei R., Barchι M. R., & Basile G., 2010. Ground penetrating radar investigations to study active faults in the Norcia Basin (central Italy). Journal of Applied Geophysics, 72(1), 39-45.
Pavlides S., Papathanassiou G., Georgiadis G., Chatzipetros A. & Valkaniotis S., 2016. Ground deformation observations of the August 24, 2016, Amatrice earthquake (central Italy). Report published online (http://eqgeogr.weebly.com/blog/-amatrice), 10 pp., in Greek.
Piccardi L., A.M. Blumetti, V. Comerci, P. Di Manna, F. Fiumanti, L. Guerrieri, et al 2016. “The August 24, 2016, Amatrice earthquakes (Mw 6.0): field evidences of on-fault effects” (September 2016).
Pierantoni P., Deiana G., & Galdenzi S., 2013. Stratigraphic and structural features of the Sibillini Mountains (Umbria-Marche Apennines, Italy). Italian Journal of Geosciences, 132(3), 497-520.
Pizzi A., & Galadini F., 2009. Pre-existing cross-structures and active fault segmentation in the northern-central Apennines (Italy). Tectonophysics, 476(1), 304-319.
Pizzi A., Calamita F., Coltorti M. A. U. R. O. & Pieruccini P., 2002. Quaternary normal faults, intramontane basins and seismicity in the Umbria-Marche-Abruzzi Apennine ridge (Italy): contribution of neotectonic analysis to seismic hazard assessment. Boll. Soc. Geol. It., Spec. Publ, 1, 31 923-929.
Pucci S., Mirabella F., Pazzaglia F., Barchi M. R., Melelli L., Tuccimei P., Soligo M. & Saccucci L., 2014. Interaction between regional and local tectonic forcing along a complex quaternary extensional basin: Upper Tiber Valley, Northern Apennines, Italy. Quaternary Science Reviews, 102, 111-132.
Reasenberg P. A., & Simpson R. W., 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science, 255(5052), 1687-1690.
Roberts G. P. & Michetti A. M., 2004. Spatial and temporal variations in growth rates along active normal fault systems: an example from The Lazio–Abruzzo Apennines, central Italy. Journal of Structural Geology, 26(2), 339-376.
Scisciani V., 2009. Styles of positive inversion tectonics in the Central Apennines and in the Adriatic foreland: Implications for the evolution of the Apennine chain (Italy). Journal of Structural Geology, 31(11), 1276-1294.
Tavarnelli E., 1996. The effects of pre-existing normal faults on thrust ramp development: an example from the Northern Apennines, Italy. Geologische Rundschau, 85(2), 363-371.
Toda S., Stein R. S., Richards‐Dinger K. & Bozkurt S. B., 2005. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research: Solid Earth, 110(B5), B05S16.
Toda S., Stein R.S., Sevilgen V. & Lin J., 2011. Coulomb 3.3 graphic-rich deformation and stress-change software-user guide. U.S. Geological Survey Open-File Report 2011-1060, 63 pp.
Valensise G., Vannoli P., Basili R., Bonini L., Burrato P., Carafa M.M.C., Fracassi U., Kastelic V., Maesano F.E., Tiberti M.M. & Tarabusi G., 2016. Fossil landscapes and youthful seismogenic sources in the central Apennines: excerpts from the 24 August 2016, Amatrice earthquake and seismic hazard implications. Annals of Geophysics, 59, Fast Track 5.
Walker J. F., Roberts G. P., Cowie P. A., Papanikolaou I., Michetti A. M., Sammonds P., Wilkinson M., Mc Caffrey K.J.W. & Phillips R. J., 2012. Relationship between topography, rates of extension and mantle dynamics in the actively-extending Italian Apennines. Earth and Planetary Science Letters, 325, 76-84.
Wells D. L. & Coppersmith K. J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.
Zhang Q. W., Zhang P. Z., Wang C., Wang Y. P. & Ellis M. A., 2003. Earthquake triggering and delaying caused by fault interaction on Xianshuihe fault belt, southwestern China. Acta Seismologica Sinica, 16(2), 156-165.
Articles les plus lus par le même auteur ou la même autrice