Complementing underwater visual surveys with eDNA metabarcoding to detect Mediterranean non-indigenous fishes


Published: Feb 27, 2025
Keywords:
eDNA metabarcoding coastal biological invasions eastern Mediterranean Sea 12S rRNA visual survey
PANAGIOTA XANTHOPOULOU
https://orcid.org/0000-0002-6092-3718
STELIOS KATSANEVAKIS
https://orcid.org/0000-0002-5137-7540
MICHALIS RAGKOUSIS
https://orcid.org/0000-0002-3886-4280
ORESTIS PAPADAKIS
https://orcid.org/0000-0002-5289-5630
MARIA ZOTOU
https://orcid.org/0000-0002-9495-3907
NIKOLAOS KAMIDIS
https://orcid.org/0000-0002-6191-3298
OWEN S. WANGENSTEEN
https://orcid.org/0000-0001-5593-348X
VASILLIS PAPATHANASIOU
https://orcid.org/0000-0002-1899-6972
DIMITRIOS KARAMPETSIS
https://orcid.org/0000-0002-7402-9602
ANTONIOS D. MAZARIS
https://orcid.org/0000-0002-4961-5490
CHRYSOULA GUBILI
https://orcid.org/0000-0002-0866-6259
Abstract

Non-indigenous species (NIS) are among the main drivers of native biodiversity loss, habitat alteration, and degradation of ecosystem services, with some NIS posing risks to human health. Efficient monitoring strategies are necessary to assess the distribution and impacts of NIS. In this study, we compared the performance of environmental DNA (eDNA) metabarcoding and visual surveys with SCUBA diving to detect marine fish NIS in Greek waters. We collected water samples from 20 coastal sites across the Aegean, Ionian, and Levantine Seas in both warm and cold periods, targeting the 12S rRNA region. A reference 12S Mediterranean NIS sequence database was created to improve regional monitoring. Underwater visual surveys were performed at the same sites to visually detect fish NIS. Overall, 15 non-indigenous fishes were detected, five with both eDNA and visual surveys, seven exclusively by eDNA, and three by visual surveys alone. The southern stations yielded more NIS detections than the northern stations in both periods. Our findings demonstrate that eDNA can provide a rapid, low-cost, and effective tool, advocating for its integration into systematic NIS monitoring in the eastern Mediterranean Sea. A comprehensive barcode reference database is essential in enhancing the effectiveness of eDNA approaches. Thus, the combination of eDNA metabarcoding and traditional underwater visual surveys is recommended for comprehensive monitoring of NIS in marine environments.

Article Details
  • Section
  • Research Article
Downloads
Download data is not yet available.
References
Aglieri, G., Quattrocchi, F., Mariani, S., Baillie, C., Spatafora, D. et al., 2023. Fish eDNA detections in ports mirror fishing fleet activities and highlight the spread of non-indigenous species in the Mediterranean Sea. Marine Pollution Bulletin, 189, 114792.
Ahmed, D.A., Hudgins, E.J., Cuthbert, R.N., Kourantidou, M., Diagne, C. et al., 2022. Managing biological invasions: the cost of inaction. Biological Invasions, 24 (7), 1927-1946.
Akaike, H., 1973. Information theory as an extension of the maximum likelihood principle. p. 267-281. In: Pro 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, 2-8 September 1971. Akademiai Kiado, Budapest. American Public Health Association (APHA), 1998. Standard Methods for the Examination of Water and Wastewater (20th ed.). American Public Health Association, Washington, DC, 1220 pp.
Antich, A., Palacín, C., Zarcero, J., Wangensteen, O.S., Turon, X., 2023. Metabarcoding reveals high‐resolution biogeographical and metaphylogeographical patterns through marine barriers. Journal of Biogeography, 50 (3), 515-527.
Ardura, A., 2019. Species-specific markers for early detection of marine invertebrate invaders through eDNA methods: Gaps and priorities in GenBank as database example. Journal for Nature Conservation, 47, 51-57.
Azzurro, E., Tuset, V. M., Lombarte, A., Maynou, F., Simberloff, D. et al., 2017. External morphology explains the success of biological invasions. Ecology Letters, 20 (9), 1169-1179.
Bailey, S., Brown, L., Campbell, M., Canning-Clode, J., Carlton, J. et al., 2020. Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: A 50-year perspective. Diversity and Distribution, 26, 1780-1797.
Bakker, J., Wangensteen, O.S., Chapman, D.D., Boussarie, G., Buddo, D. et al., 2017. Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact. Scientific Reports, 7 (1), 1-9.
Bariche, M., Bilecenoglu, M., Kaya, M., Azzurro, E., 2013. Confirmed presence of the invasive alien species Pterois miles (Bennett, 1828) in the Mediterranean Sea: a case report. Mediterranean Marine Science, 14 (2), 292-294.
Batjakas, I.E., Evangelopoulos, A., Giannou, M., Pappou, S., Pappanikola, E. et al., 2023. Lionfish Diet Composition in Three Study Sites in the Aegean Sea (Southern Crete, and Kastellorizo and Nysiros Islands): An Invasive Generalist? Fishes, 8, 314.
Bessell, T.J., Appleyard, S.A., Stuart-Smith, R.D., Johnson, O.J., Ling, S.D. et al., 2023. Using eDNA and SCUBA surveys for detection and monitoring of a threatened marine cryptic fish. Aquatic Conservation: Marine and Freshwater Ecosystems, 33 (5), 431-442.
Bessey, C., Jarman, S.N., Berry, O., Olsen, Y.S., Bunce, M. et al., 2020. Maximizing fish detection with eDNA metabarcoding. Environmental DNA, 2 (4), 493-504.
Blackburn, T.M., Pyšek, P., Bacher, S., Carlton, J.T., Duncan, R.P. et al., 2011. A proposed unified framework for biological invasions. Trends in ecology & evolution, 26 (7), 333-339.
Borja, Á., Chust, G., Rodríguez, J.G., Bald, J., Belzunce-Segarra, M.J. et al., 2016. ‘The past is the future of the present’: learning from long-time series of marine monitoring. Science of the Total Environment, 566, 698-711.
Borrell, Y.J., Miralles, L., Do Huu, H., Mohammed-Geba, K., Garcia-Vazquez, E., 2017. DNA in a bottle - Rapid metabarcoding survey for early alerts of invasive species in ports. PLoS One, 12 (9), e0183347.
Boudouresque, C.F., Blanfuné, A., Fernandez, C., Lejeusne, C., Pérez, T. et al., 2017. Marine biodiversity-warming vs. biological invasions and overfishing in the Mediterranean Sea: take care,‘One Train can hide another’. MOJ Ecology & Environmental Science, 2 (4), 1-13.
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P. et al., 2016. obitools: A unix‐inspired software package for DNA metabarcoding. Molecular ecology resources, 16 (1), 176-182.
Briski, E., Chan, F.T., Darling, J.A., Lauringson, V., MacIsaac, H.J. et al., 2018. Beyond propagule pressure: importance of selection during the transport stage of biological invasions. Frontiers in Ecology and the Environment, 16 (6), 345-353.
Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L. et al., 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, New York, NY.
Burnham, K.P., Anderson, D. R., 2002. Model Selection and Multimodel Inference. Springer, New York, 488 pp. Chatzimentor, A., Doxa, A., Katsanevakis, S., Mazaris, A.D., 2023. Are Mediterranean marine threatened species at high risk by climate change?. Global Change Biology, 29 (7), 1809-1821.
Christidis, G., Batziakas, E., Peristeraki, P., Kosoglou, I., Tampakakis, K. et al., 2022. The Impact of Lagocephalus sceleratus (Gmelin, 1789) on Small-Scale Fisheries in Crete: Preliminary Results. p. 357-361. In: Proceedings of the Marine and Inland Waters Research Symposium, Porto Heli, Argolida, 16–19 September 2022. HCMR, Athens.
Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F. et al., 2010. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One, 5 (8), e11842.
Collins, R.A., Wangensteen, O.S., O’Gorman, E.J., Mariani, S., Sims, D.W. et al., 2018. Persistence of environmental DNA in marine systems. Communications Biology, 1, 185.
Collins, R.A., Bakker, J., Wangensteen, O.S., Soto, A.Z., Corrigan, L. et al., 2019. Non‐specific amplification compromises environmental DNA metabarcoding with COI. Methods in Ecology and Evolution, 10 (11), 1985-2001.
Costello, K.E., Trottet, A., 2023. Surveillance guidelines for invasive alien species in the marine environment. Technical note prepared by IUCN for the European Commission, 70 pp.
Cowart, D.A., Murphy, K.R., Cheng, C.H.C., 2018. Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic Peninsula. Marine Genomics, 37, 148-160.
Cuthbert, R.N., Diagne, C., Hudgins, E.J., Turbelin, A., Ahmed, D.A. et al., 2022. Biological invasion costs reveal insufficient proactive management worldwide. Science of the Total Environment, 819, 153404.
Deiner, K., Bik, H.M., Mächler, E., Seymour, M., Lacoursière‐ Roussel, A. et al., 2017. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26 (21), 5872-5895.
Dimitriadis, C., Sourbès, L., 2015. On the occurrence of the Lessepsian immigrants Alepes djedaba, Lagocephalus sceleratus and Fistularia commersonii in Zakynthos Island (SE Ionian Sea, Greece). p. 484-485. In: New Mediterranean Biodiversity Records (July 2015), Tsiamis, K., Aydogan, Ö., Bailly, N., Balistreri, P., Bariche, M. et al., Mediterranean Marine Science, 16 (2), 472-488.
Doble, C.J., Hipperson, H., Salzburger, W., Horsburgh, G.J., Mwita, C. et al., 2020. Testing the performance of environmental DNA metabarcoding for surveying highly diverse tropical fish communities: A case study from Lake Tanganyika. Environmental DNA, 2 (1), 24-41.
Duarte, S., Vieira, P.E., Lavrador, A.S., Costa, F.O., 2021. Status and prospects of marine NIS detection and monitoring through (e) DNA metabarcoding. Science of the Total Environment, 751, 141729.
Evangelopoulos, A., Nikolaou, A., Michailidis, N., Kampouris, T.E., Batjakas, I.E., 2020. Progress of the dispersal of the alien goatfish Parupeneus forsskali (Fourmanoir & Guézé, 1976) in the Mediterranean, with preliminary information on its diet composition in Cyprus. BioInvasions Records, 9 (2), 209-222.
Evangelopoulos, A., Karampetsis, D., Christidis, A., Gubili, C., Sapounidis, A. et al., 2024. Non-native fish species in the North Aegean Sea: a review of their distributions integrating unpublished fisheries data. Frontiers in Marine Science, 11, 1398037.
Fediajevaite, J., Priestley, V., Arnold, R., Savolainen, V., 2021. Meta‐analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards. Ecology and Evolution, 11 (9), 4803-4815.
Ferreira, A.O., Azevedo, O.M., Barroso, C., Duarte, S., Egas, C. et al., 2024. Multi-marker DNA metabarcoding for precise species identification in ichthyoplankton samples. Scientific Reports, 14 (1), 19772.
Filatov, D.A., 2002. ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets. Molecular Ecology Notes, 2 (4), 621-624.
Fonseca, V.G., Davison, P.I., Creach, V., Stone, D., Bass, D. et al., 2023. The application of eDNA for monitoring aquatic non-indigenous species: practical and policy considerations. Diversity, 15 (5), 631.
Fontes, J.T., Katoh, K., Pires, R., Soares, P., Costa, F.O., 2024. Benchmarking the discrimination power of commonly used markers and amplicons in marine fish (e) DNA (meta) barcoding. Metabarcoding and Metagenomics, 8, e128646.
Friedlander, A.M., Parrish, J.D., 1998. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. Journal of experimental marine biology and ecology, 224 (1), 1-30.
Froese, R., Pauly, D., 2023. FishBase. World Wide Web electronic publication, version (02/2014). http://www.fishbase. org (Accessed 26 October 2023).
Frøslev, T.G., Kjøller, R., Bruun, H.H., Ejrnæs, R., Brunbjerg, A.K., et al., 2017. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nature Communications, 8, 1188.
Galanidi, M., Zenetos, A., 2022. Data-Driven Recommendations for Establishing Threshold Values for the NIS Trend Indicator in the Mediterranean Sea. Diversity, 14 (1), 57.
Galil, B.S., Marchini, A., Occhipinti-Ambrogi, A., 2018. East is east and West is west? Management of marine bioinvasions in the Mediterranean Sea. Estuarine, Coastal and Shelf Science, 201, 7-16.
Galil, B.S., Danovaro, R., Rothman, S.B.S., Gevili, R., Goren, M., 2019. Invasive biota in the deep-sea Mediterranean: an emerging issue in marine conservation and management. Biological Invasions, 21, 281-288.
Garrabou, J., Gómez‐Gras, D., Medrano, A., Cerrano, C., Ponti, M. et al., 2022. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Global Change Biology, 28 (19), 5708-5725.
Giakoumi, S., Katsanevakis, S., Albano, P.G., Azzurro, E., Cardoso, A.C. et al., 2019. Management priorities for marine invasive species. Science of the total environment, 688, 976-982.
Govindarajan, A.F., McCartin, L., Adams, A., Allan, E., Belani, A. et al., 2022. Improved biodiversity detection using a large-volume environmental DNA sampler with in situ filtration and implications for marine eDNA sampling strategies. Deep Sea Research Part I: Oceanographic Research Papers, 189, 103871.
Harrison, J.B., Sunday, J.M., Rogers, S.M., 2019. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society B, 286 (1915), 20191409.
Hartle-Mougiou, K., Gubili, C., Xanthopoulou, P., Kasapidis, P., Valiadi, M. et al., 2024. Development of a quantitative colorimetric LAMP assay for fast and targeted molecular detection of the invasive lionfish Pterois miles from environmental DNA. Frontiers in Marine Science, 11, 1358793.
Hastie, T.J., Tibshirani, R.J., 1990. Monographs on statistics and applied probability. Generalized additive models, 43, 205-208. Jerde, C.L., Mahon, A.R., Chadderton, W.L., Lodge, D.M., 2011. “Sight‐unseen” detection of rare aquatic species using environmental DNA. Conservation Letters, 4 (2), 150-157.
Jo, T., Murakami, H., Yamamoto, S., Masuda, R., Minamoto, T., 2019. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecology and evolution, 9 (3), 1135-1146.
Karachle, P.K., Oikonomou, A., Pantazi, M., Stergiou, K. I., Zenetos, A., 2022. Can biological traits serve as predictors for fishes’ introductions, establishment, and Interactions? The Mediterranean Sea as a case study. Biology, 11 (11), 1625.
Katikou, P., Georgantelis, D., Sinouris, N., Petsi, A., Fotaras, T., 2009. First report on toxicity assessment of the Lessepsian migrant pufferfish Lagocephalus sceleratus (Gmelin, 1789) from European waters (Aegean Sea, Greece). Toxicon, 54 (1), 50-55.
Katsanevakis, S., Tempera, F., Teixeira, H., 2016. Mapping the impact of alien species on marine ecosystems: the Mediterranean Sea case study. Diversity and Distributions, 22 (6), 694-707.
Katsanevakis, S., Rilov, G., Edelist, D., 2018. Impacts of marine invasive alien species on European fisheries and aquaculture– plague or boon? CIESM Monograph, 50, 125-132.
Katsanevakis, S., Weber, A., Pipitone, C., Leopold, M., Cronin, M. et al., 2012a. Monitoring marine populations and communities: methods dealing with imperfect detectability. Aquatic Biology, 16 (1), 31-52.
Katsanevakis, S., Bogucarskis, K., Gatto, F., Vandekerkhove, J., Deriu, I. et al., 2012b. Building the European alien species information network (EASIN): a novel approach for the exploration of distributed alien species data. BioInvasions Records, 1 (4), 235–245.
Katsanevakis, S., Coll, M., Piroddi, C., Steenbeek, J., Ben Rais Lasram, F. et al., 2014. Invading the Mediterranean Sea: biodiversity patterns shaped by human activities. Frontiers in Marine Science, 1, 32.
Katsanevakis, S., Coll, M., Fraschetti, S., Giakoumi, S., Goldsborough, D. et al., 2020a. Twelve recommendations for advancing marine conservation in European and contiguous seas. Frontiers in Marine Science, 7, 879.
Katsanevakis, S., Poursanidis, D., Hoffman, R., Rizgalla, J., Rothman, S.B.-S., et al., 2020b. Unpublished Mediterranean records of marine alien and cryptogenic species. BioInvasions Records, 9 (2), 165-182
Katsanevakis, S., Olenin, S., Puntila-Dodd, R., Rilov, G., Stæhr, P.A.U. et al., 2023. Marine invasive alien species in Europe: 9 years after the IAS Regulation. Frontiers in Marine Science, 10, 1271755.
Kelly, R.P., Port, J.A., Yamahara, K.M., Crowder, L.B., 2014. Using environmental DNA to census marine fishes in a large mesocosm. PLoS One, 9 (1), e86175.
Kleitou, P., Hall-Spencer, J.M., Savva, I., Kletou, D., Hadjistylli, M. et al., 2021. The case of lionfish (Pterois miles) in the Mediterranean Sea demonstrates limitations in EU legislation to address marine biological invasions. Journal of Marine Science and Engineering, 9 (3), 325.
Korakaki, E., Legakis, A., Katsanevakis, S., Koulelis, P. P., Avramidou, E.V. et al., 2021. Invasive alien species of Greece. p. 124-189. In: Invasive alien species: observations and issues from around the world. Pullaiah, T., Ielmini, M.R. (Eds). Wiley, Hoboken.
Lehtiniemi, M., Ojaveer, H., David, M., Galil, B., Gollasch, S. et al., 2015. Dose of truth—monitoring marine non-indigenous species to serve legislative requirements. Marine Policy, 54, 26-35.
Mahé, F., Rognes, T., Quince, C., De Vargas, C., Dunthorn, M., 2015. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ, 3, e1420.
Marchini, A., Galil, B.S., Occhipinti-Ambrogi, A., 2015. Recommendations on standardizing lists of marine alien species: Lessons from the Mediterranean Sea. Marine Pollution Bulletin, 101 (1), 267-273.
Martinez Arbizu, P., 2020. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4. https:// github.com/pmartinezarbizu/pairwiseAdonis
Mauvisseau, Q., Harper, L.R., Sander, M., Hanner, R.H., Kleyer, H., et al., 2022. The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environmental Science & Technology, 56 (9), 5322-5333.
Mavruk, S., Bengil, F., Yeldan, H., Manasirli, M., Avsar, D., 2017. The trend of lessepsian fish populations with an emphasis on temperature variations in Iskenderun Bay, the Northeastern Mediterranean. Fisheries Oceanography, 26 (5), 542-554.
McKnight, E.G.W., Shafer, A.B.A., Frost, P.C., 2024. Quantifying the effect of water quality on eDNA degradation using microcosm and bioassay experiments. Environmental DNA, 6, e530.
Miliou, A., Loudaros, E., 2020. First record of Cheilodipterus novemstriatus in Rhodes Island (Dodecanese). p. 641-642. In: New alien Mediterranean biodiversity records (October 2020).
Ragkousis, M., Abdelali, N., Azzurro, E., Badreddine, A., Bariche, M. et al., 2020, Mediterranean Marine Science, 21 (3), 631-652.
Miya, M., Gotoh, R.O., Sado, T., 2020. MiFish metabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fisheries Science, 86 (6), 939-970.
Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J.Y. et al., 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society open science, 2 (7), 150088.
Mohammed-Geba, K., Sheir, S.K., El-Aziz Hamed, E.A., Galal- Khallaf, A., 2020. Molecular and morphological signatures for extreme environmental adaptability of the invasive mussel Brachidontes pharaonis (Fischer, 1870). Molecular and Cellular Probes, 53, 101594.
Morisette, J., Burgiel, S., Brantley, K., Daniel, W.M., Darling, J. et al., 2021. Strategic considerations for invasive species managers in the utilization of environmental DNA (eDNA): steps for incorporating this powerful surveillance tool. Management of biological invasions, 12 (3), 747-775.
Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P. et al., 2022. Vegan: community ecology package. R package version 2.6-2. http://CRAN.R-project.org/ package=vegan
Ostberg, C.O., Chase, D.M., 2022. Ontogeny of eDNA shedding during early development in Chinook Salmon (Oncorhynchus tshawytscha). Environmental DNA, 4 (2), 339-348.
Packer, J.G., Meyerson, L.A., Richardson, D.M., Brundu, G., Allen, W.J. et al., 2017. Global networks for invasion science: benefits, challenges and guidelines. Biological Invasions, 19, 1081-1096.
Parrondo, M., Clusa, L., Mauvisseau, Q., Borrell, Y.J., 2018. Citizen warnings and post checkout molecular confirmations using eDNA as a combined strategy for updating invasive species distributions. Journal for Nature Conservation, 43, 95-103.
Parsons, T. R., Maita, Y., Lalli, C. M., 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford. 173 pp.
Pastor, F., Valiente, J.A., Khodayar, S., 2020. A warming Mediterranean: 38 years of increasing sea surface temperature. Remote sensing, 12 (17), 2687.
Peterson, B.G., Carl, P., Boudt K., Bennett, R., Ulrich, J. et al., 2020. PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis. R package version 2.0.4. https:// CRAN.R-project.org/package=PerformanceAnalytics
Ragkousis, M., Sini, M., Koukourouvli, N., Zenetos, A., Katsanevakis, S., 2023. Invading the Greek Seas: spatiotemporal patterns of marine impactful alien and cryptogenic species. Diversity, 15 (3), 353.
Raitsos, D.E., Beaugrand, G., Georgopoulos, D., Zenetos, A., Pancucci-Papadopoulou, A.M. et al., 2010. Global climate change amplifies the entry of tropical species into the eastern Mediterranean Sea. Limnology and Oceanography, 55 (4), 1478-1484.
Rilov, G., Galil, B., 2009. Marine bioinvasions in the Mediterranean Sea–history, distribution and ecology. p. 549-575. In: Biological invasions in marine ecosystems: ecological, management, and geographic perspectives. Rilov, G., Crooks, J.A. (Eds.) Springer, Berlin.
Rishan, S.T., Kline, R.J., Rahman, M.S., 2023. Applications of environmental DNA (eDNA) to detect subterranean and aquatic invasive species: a critical review on the challenges and limitations of eDNA metabarcoding. Environmental Advances, 12, 100370.
Robinson, K.M., Prentice, C., Clemente‐Carvalho, R., Hall, K., Monteith, Z.L. et al., 2023. Paired environmental DNA and dive surveys provide distinct but complementary snapshots of marine biodiversity in a temperate fjord. Environmental DNA, 5 (3), 597-612.
Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584.
Roy, H.E., Bacher, S., Essl, F., Adriaens, T., Aldridge, D.C. et al., 2019. Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union. Global Change Biology, 25 (3), 1032-1048.
Ruppert, K.M., Kline, R.J., Rahman, M.S., 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17, e00547.
Saito, T., Doi, H., 2021. Degradation modeling of water environmental DNA: Experiments on multiple DNA sources in pond and seawater. Environmental DNA, 3, 850-860.
Sepulveda, A.J., Birch, J.M., Barnhart, E.P., Merkes, C.M., Yamahara, K.M. et al., 2020a. Robotic environmental DNA bio-surveillance of freshwater health. Scientific Reports, 10 (1), 14389.
Sepulveda, A.J., Nelson, N.M., Jerde, C.L., Luikart, G., 2020b. Are environmental DNA methods ready for aquatic invasive species management?. Trends in ecology & evolution, 35 (8), 668-678.
Seymour, M., Durance, I., Cosby, B.J., Ransom-Jones, E., Deiner, K. et al., 2018. Acidity promotes degradation of multi- species environmental DNA in lotic mesocosms. Communications biology, 1, 4.
Stat, M., Huggett, M.J., Bernasconi, R., DiBattista, J.D., Berry, T.E. et al., 2017. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Scientific Reports, 7 (1), 12240.
Strickler, K.M., Fremier, A.K., Goldberg, C.S., 2015. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 183, 85-92.
Taberlet, P., Coissac, E., Hajibabaei, M., Rieseberg, L.H., 2012. Environmental DNA. Molecular ecology, 21 (8), 1789-1793.
Tamburini, M., Keppel, E., Marchini, A., Repetto, M.F., Ruiz, G.M. et al., 2021. Monitoring non-indigenous species in port habitats: first application of a standardized North American protocol in the Mediterranean Sea. Frontiers in Marine Science, 8, 700730.
Thanopoulou, Z., Sini, M., Vatikiotis, K., Katsoupis, C., Dimitrakopoulos, P.G. et al., 2018. How many fish? Comparison of two underwater visual sampling methods for monitoring fish communities. PeerJ, 6, e5066.
Tsirintanis, K., Azzurro, E., Crocetta, F., Dimiza, M., Froglia, C. et al., 2022. Bioinvasion impacts on biodiversity, ecosystem services, and human health in the Mediterranean Sea. Aquatic Invasions, 17 (3), 308-352.
Tsirintanis, K., Sini, M., Ragkousis, M., Zenetos, A., Katsanevakis, S., 2023. Cumulative Negative Impacts of Invasive Alien Species on Marine Ecosystems of the Aegean Sea. Biology, 12 (7), 933.
Tsuji, S., Shibata, N., 2021. Identifying spawning events in fish by observing a spike in environmental DNA concentration after spawning. Environmental DNA, 3 (1), 190-199.
Valdivia‐Carrillo, T., Rocha‐Olivares, A., Reyes‐Bonilla, H., Domínguez‐Contreras, J.F., Munguia‐Vega, A., 2021. Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot. Molecular Ecology Resources, 21 (5), 1558-1574.
Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J. et al., 2016. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology, 25 (4), 929-942.
Venables, W.N., Ripley, B.D., 2002. Random and Mixed Effects. p. 271-300. In: Modern Applied Statistics with S. Springer, New York.
West, K. M., Jones, T. R., Denis‐Roy, L., Johnson, O. J., Clausius, E. et al., 2024. Continual Day–Night eDNA Detectability Amidst Diel Reef Species Fluctuations on Diver Transects. Environmental DNA, 6 (5), e70018.
Wood, S. N., Pya, N., Säfken, B., 2016. Smoothing parameter and model selection for general smooth models. Journal of the American Statistical Association, 111 (516), 1548-1563.
Zaiko, A., Pochon, X., Garcia-Vazquez, E., Olenin, S., Wood, S. A., 2018. Advantages and limitations of environmental DNA/RNA tools for marine biosecurity: management and surveillance of non-indigenous species. Frontiers in Marine Science, 5, 322.
Zangaro, F., Saccomanno, B., Tzafesta, E., Bozzeda, F., Specchia, V. et al., 2021. Current limitations and future prospects of detection and biomonitoring of NIS in the Mediterranean Sea through environmental DNA. NeoBiota, 70, 151-165.
Zenetos, A., Gofas, S., Verlaque, M., Cinar, M. E., Garcia Raso, J. E. et al., 2010. Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Mediterranean Marine Science, 11 (2), 381-493.
Zenetos, A., Koutsogiannopoulos, D., Ovalis, P., Poursanidis, D. 2013. The role played by citizen scientists in monitoring marine alien species in Greece. Cahiers de Biologie Marine, 54 (3), 419-426.
Zenetos, A., Arianoutsou, M., Bazos, I., Balopoulou, S., Corsini- Foka, M., et al., 2015. ELNAIS : A collaborative network on Aquatic Alien Species in Hellas (Greece). Management of Biological Invasions, 6 (2), 185-196.
Zenetos, A., Corsini-Foka, M., Crocetta, F., Gerovasileiou, V., Karachle, P. K. et al., 2018. Deep cleaning of alien and cryptogenic species records in the Greek Seas (2018 update). Management of Biological Invasions, 9 (3), 209-226.
Zenetos, A., Albano, P. G., Garcia, E. L., Stern, N., Tsiamis, K. et al., 2022. Established non-indigenous species increased by 40% in 11 years in the Mediterranean Sea. Mediterranean Marine Science, 23 (1), 196-212.
Zhang, S., Zhao, J., Yao, M., 2020a. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods in Ecology and Evolution, 11 (12), 1609-1625.
Zhang, Y., Pavlovska, M., Stoica, E., Prekrasna, I., Yang, J. et al., 2020b. Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals. Environment International, 135, 105307.
Ziegler, P. E., 2013. Influence of data quality and quantity from a multiyear tagging program on an integrated fish stock assessment. Canadian Journal of Fisheries and Aquatic Sciences, 70 (7), 1031-1045.
Most read articles by the same author(s)