test Effect of Hydrogen-Rich Water Intake on the Polyamine Profile of Colostrum and Milk of Goat|Journal of the Hellenic Veterinary Medical Society

Effect of Hydrogen-Rich Water Intake on the Polyamine Profile of Colostrum and Milk of Goat


Published: Nov 6, 2025
Keywords:
Goat Hydrogen-rich water Milk Colostrum Polyamine Lactation
M Bulut
M Kuru
https://orcid.org/0000-0003-4409-251X
Y Çelebi
https://orcid.org/0000-0002-4495-0206
B Boğa Kuru
M Makav
D Alwazeer
Abstract

The present study aimed to evaluate the effect of hydrogen-rich water (HRW) intake on the polyamine profile of colostrum and milk. Two groups of Gurcu goats were provided ad libitum access to normal water (NW) and HRW from the 21st day prepartum until the 21st day postpartum. All polyamines were increased in NW- and HRW-fed colostrum and milk. On the 0- and the 21-days, all polyamines were higher for HRW-fed colostrum/milk samples than NW-fed ones. HRW supplementation to goats before parturition increased the polyamines in colostrum/milk with a positive potential impact on the nutrition and health of goats and newborn kids.

Article Details
  • Section
  • Research Articles
Downloads
Download data is not yet available.
References
Alwazeer, D., 2024a. Use of hydrogen extraction in the food industry,
in: Reference Module in Chemistry, Molecular Sciences and
Chemical Engineering. Elsevier. https://doi.org/10.1016/b978-0-
-15978-7.00010-2
Alwazeer, D., 2024b. Consumption of Hydrogen-Treated Foods Provides
Nutritional and Health Benefits, in: Slezak, J., Kura, B. (Eds.),
Molecular Hydrogen in Health and Disease. Springer Nature Switzerland,
Cham, pp. 319–337. https://doi.org/10.1007/978-3-031-
-3_19
Ballard, O., & Morrow, A. L. (2013). Human milk composition: nutrients
and bioactive factors. Pediatric Clinics, 60(1), 49-74.
Bardócz, S., 1995. Polyamines in food and their consequences for food
quality and human health. Trends Food Sci Technol 6, 341–346.
Bardócz, S., Hughes, E.L., Grant, G., Brown, D.S., Duguid, T.J., Pusztai,
A., 1998. Uptake, inter-organ distribution and metabolism of dietary
putrescine in the rat. J Nutr Biochem 9, 332–338.
Bulut, M., Çelebi Sezer, Y., Ceylan, M.M., Alwazeer, D., Koyuncu, M.,
Hydrogen-rich water can reduce the formation of biogenic
amines in butter. Food Chem 384, 132613. https://doi.org/10.1016/j.
foodchem.2022.132613
Contarini, G., Povolo, M., Pelizzola, V., Monti, L., Bruni, A., Passolungo,
L., ... & Degano, L. (2014). Bovine colostrum: Changes in
lipid constituents in the first 5 days after parturition. Journal of
Dairy Science, 97(8), 5065-5072.
Dandrifosse, G., Peulen, O., El Khefif, N., Deloyer, P., Dandrifosse,
A.C., Grandfils, C., 2000. Are milk polyamines preventive agents
against food allergy? Proceedings of the Nutrition Society 59,
Galitsopoulou, A., Michaelidou, A.-M., Menexes, G., Alichanidis,
E., 2015. Polyamine profile in ovine and caprine colostrum and
milk. Food Chem 173, 80–85. https://doi.org/10.1016/j.foodchem.
09.168
Giorgio, D., Di Trana, A., Claps, S., 2018. Oligosaccharides, polyamines
and sphingolipids in ruminant milk. Small Ruminant Research
, 23–30.
Gomez, K.A., Gomez, A.A., 1984. Statistical procedures for agricultural
research. John wiley & sons.
Gopal, P. K., & Gill, H. S. (2000). Oligosaccharides and glycoconjugates
in bovine milk and colostrum. British Journal of Nutrition,
(S1), 69-74.
Gugliucci, A., 2004. Polyamines as clinical laboratory tools. Clinica
chimica acta 344, 23–35.
Hirano, R., Shirasawa, H., Kurihara, S., 2021. Health-Promoting Effects
of Dietary Polyamines. Med Sci (Basel) 9, 1–8. https://doi.
org/10.3390/medsci9010008
Kajiyama, S., Hasegawa, G., Asano, M., Hosoda, H., Fukui, M., Nakamura,
N., Kitawaki, J., Imai, S., Nakano, K., Ohta, M., 2008.
Supplementation of hydrogen-rich water improves lipid and glucose
metabolism in patients with type 2 diabetes or impaired glucose
tolerance. Nutrition Research 28, 137–143.
Köktürk, M., Atalar, M.N., Odunkıran, A., Bulut, M., Alwazeer, D.,
a. Evaluation of the hydrogen-rich water alleviation potential
on mercury toxicity in earthworms using ATR-FTIR and LC–
ESI–MS/MS spectroscopy. Environmental Science and Pollution
Köktürk, M., Yıldırım, S., Eser, G., Bulut, M., Alwazeer, D., 2022b.
Hydrogen-Rich Water Alleviates the Nickel-Induced Toxic Responses
(Inflammatory Responses, Oxidative Stress, DNA Damage) and
Ameliorates Cocoon Production in Earthworm. Biol Trace Elem
Komprda, T., Burdychová, R., Dohnal, V., Cwiková, O., Sládková, P.,
Some factors influencing biogenic amines and polyamines
content in Dutch-type semi-hard cheese. European Food Research
and Technology 227, 29–36. https://doi.org/10.1007/s00217-007-
-7
Kuru, M., Makav, M., Boğa Kuru, B., Bektaşoğlu, F., Demir, M.C.,
Bulut, M., Alwazeer, D., 2024. Hydrogen-rich water supplementation
improves metabolic profile during peripartum period in Gurcu
goats and enhances the health and survival of kids. Res Vet Sci 171,
Larqué, E., Sabater-Molina, M., Zamora, S., 2007. Biological significance
of dietary polyamines. Nutrition 23, 87–95. https://doi.
org/10.1016/j.nut.2006.09.006
Matsumoto, M., Kibe, R., Ooga, T., Aiba, Y., Kurihara, S., Sawaki,
E., Koga, Y., Benno, Y., 2012. Impact of intestinal microbiota on
intestinal luminal metabolome. Sci Rep 2, 233.
McGrath, B. A., Fox, P. F., McSweeney, P. L., & Kelly, A. L. (2016).
Composition and properties of bovine colostrum: a review. Dairy
Science & Technology, 96(2), 133-158.
Michaelidou, A.M., 2008. Factors influencing nutritional and health profile
of milk and milk products. Small Ruminant Research 79, 42–50.
Minois, N., 2014. Molecular Basis of the ‘Anti-Aging’’ Effect of Spermidine
and Other Natural Polyamines - A Mini-Review.’ Gerontology
Nishibori, N., Fujihara, S., & Akatsu, T. (2003). Amounts of polyamines
in foods in Japan and intake by Japanese. Food Chemistry,
(1), 107-116.
Nishimura, K., Shiina, R., Kashiwagi, K., Igarashi, K., 2006. Decrease
in polyamines with aging and their ingestion from food and drink.
J Biochem 139, 81–90. https://doi.org/10.1093/jb/mvj003
Pakkanen, R., & Aalto, J. (1997). Growth factors and antimicrobial factors
of bovine colostrum. International Dairy Journal, 7(5), 285-297.
Pegg, A. E. (2016). Functions of polyamines in mammals. Journal of
Biological Chemistry, 291(29), 14904-14912.
Plakantara, S., Michaelidou, A.-M., Polychroniadou, A., Menexes, G.,
Alichanidis, E., 2010. Nucleotides and nucleosides in ovine and
caprine milk during lactation. J Dairy Sci 93, 2330–2337.
Płoszaj, T., Ryniewicz, Z., Motyl, T., 1997. Polyamines in goat’s colostrum
and milk. Comparative Biochemistry and Physiology -
B Biochemistry and Molecular Biology 118, 45–52. https://doi.
org/10.1016/S0305-0491(97)00018-7
Polidori, P., Rapaccetti, R., Klimanova, Y., Zhang, J.-J., Santini, G.,
Vincenzetti, S., 2022. Nutritional parameters in colostrum of different
mammalian species. Beverages 8, 54.
Prosser, C.G., McLaren, R.D., Frost, D., Agnew, M., Lowry, D.J., 2008.
Composition of the non-protein nitrogen fraction of goat whole milk powder and goat milk-based infant and follow-on formulae.
Int J Food Sci Nutr 59, 123–133.
Romain, N., Dandrifosse, G., Jeusette, F., Forget, P., 1992. Polyamine
concentration in rat milk and food, human milk, and infant formulas.
Pediatr Res 32, 58–63. https://doi.org/10.1203/00006450-
-00011
Silanikove, N., Leitner, G., Merin, U., Prosser, C.G., 2010. Recent
advances in exploiting goat’s milk: quality, safety and production
aspects. Small Ruminant Research 89, 110–124.
Soda, K., 2022. Overview of Polyamines as Nutrients for Human Healthy
Long Life and Effect of Increased Polyamine Intake on DNA Methylation.
Stelwagen, K., Carpenter, E., Haigh, B., Hodgkinson, A., & Wheeler,
T. T. (2009). Immune components of bovine colostrum and milk.
Journal of Animal Science, 87(suppl_13), 3-9.
Sugiyama, Y., Nara, M., Sakanaka, M., Gotoh, A., Kitakata, A., Okuda,
S., Kurihara, S., 2017. Comprehensive analysis of polyamine
transport and biosynthesis in the dominant human gut bacteria:
Potential presence of novel polyamine metabolism and transport
genes. International Journal of Biochemistry and Cell Biology 93,
Todorovic, N., Fernández-Landa, J., Santibañez, A., Kura, B., Stajer, V.,
Korovljev, D., Ostojic, S.M., 2023. The Effects of Hydrogen-Rich
Water on Blood Lipid Profiles in Clinical Populations: A Systematic
Review and Meta-Analysis. Pharmaceuticals 16, 142.
Tolenaars, L., Romanazzi, D., Carpenter, E., Gallier, S., Prosser, C.G.,
Minor dietary components intrinsic to goat milk and goat
milk formulas. Int Dairy J 117, 105012. https://doi.org/10.1016/j.
idairyj.2021.105012
Ungerfeld, E.M., 2020. Metabolic Hydrogen Flows in Rumen Fermentation:
Principles and Possibilities of Interventions. Front Microbiol
Uruakpa, F. O., Ismond, M. A. H., & Akobundu, E. N. T. (2002). Colostrum
and its benefits: a review. Nutrition Research, 22(6), 755-767.
Wang, M., Wang, R., Zhang, X., Ungerfeld, E.M., Long, D., Mao, H.,
Jiao, J., Beauchemin, K.A., Tan, Z., 2017. Molecular hydrogen
generated by elemental magnesium supplementation alters rumen
fermentation and microbiota in goats. British Journal of Nutrition
Wang, Z., Wang, R., Meng, C., Ji, Y., Sun, L., Nie, H., Mao, D., Wang,
F., 2019. Effects of dietary supplementation of N-carbamylglutamate
on lactation performance of lactating goats and growth performance
of their suckling kidlets. Small Ruminant Research 175, 142–148.
Zhang, Y., Su, W.-J., Chen, Y., Wu, T.-Y., Gong, H., Shen, X.-L., Wang,
Y.-X., Sun, X.-J., Jiang, C.-L., 2016. Effects of hydrogen-rich water
on depressive-like behavior in mice. Sci Rep 6, 23742.
Zheng, M., Yu, H., Xue, Y., Yang, T., Tu, Q., Xiong, K., Deng, D., Lu,
L., Huang, N., 2021. The protective effect of hydrogen-rich water
on rats with type 2 diabetes mellitus. Mol Cell Biochem 476,
Zor, M., Bulut, M., Göksu Karagöz, S., Çetintaş, Y., Alwazeer, D., 2023.
Use of Hydrogen-Rich water in rice milk preparation improves the
nutritional and sensory properties of product. Food Chem 137821.
Most read articles by the same author(s)