Effect of dietary guanidinoacetic acid supplementation on antiox idant status, biochemical parameters, inflammation cytokines and growth performance in broiler chickens


M Fathi
Résumé

This study examined the effects of dietary guanidinoacetic acid (GAA) on biochemical parameters, antioxidant status and inflammatory responses of chicks. Three hundred 1-d-old male broiler chicks (Ross 308) were randomly assigned to fifteen pens containing 20 chicks each, which was subjected to one of three dietary treatments supplemented with different levels of guanidinoacetic acid (GAA) at levels of (control, 0, 6 and 9 g/kg). On day 42, 2 birds per cage were weighed and euthanized, and samples were collected. Dietary GAA in 6 and 9 g/kg supplementation depressed growth performance (reduced feed intake & weight gain and increased feed conversion ratio) than broilers in the control group. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), Gamma glutamyltransferase (GGT), Alkaline Phosphatase (ALP) activity, and creatinine & urea levels showed a marked significant (P<0.05) increase in 6 and 9 g/kg groups supplemented groups compared to the control group. Also, high levels of GAA significantly reduced serum Nitric oxide levels without affecting cholesterol and triglyceride. Malondialdehyde (MDA) markedly increased along with a significant decrease of glutathione peroxidase (GPx), superoxide dismutase (SOD) and in serum and liver, and catalase (CAT) in serum in both 6 and 9g/kg groups compared to control group. None of the serum and liver inflammatory parameters were affected by high levels of GAA.  In conclusion, high levels of dietary GAA supplementation can induced oxidative stress by increasing lipid peroxidation and decreasing antioxidant function in broiler chickens.

Article Details
  • Rubrique
  • Articles
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
Références
Ahmadipour, B., Khajali, F., Sharifi MR. 2018. Effect of Guanidinoacetic
Acid Supplementation on Growth Performance and Gut Morphology
in Broiler Chickens. Poultry Science Journal, 6(1): 19-24.
Ale Saheb Fosoul SS, Azarfar A, Gheisari A, Khosravinia H. 2019.
Performance and physiological responses of broiler chickens to
supplemental guanidinoacetic acid in arginine-deficient diets. British
Poult Sci, 60(2):161–168.
Arab HA, R. Jamshidi, A. Rassouli, G. Shams and M. H. Hassanzadeh.
Generation of hydroxyl radicals during ascites experimentally.
British Journal of Poultry Science, 47, 2: 216-222.
Baker, D. H. 2009. Advances in protein-amino acid nutrition of poultry.
Amino Acids, 37: 29–41
Bailey, R. A., Watson, K. A., Bilgili, S. F., and Avendano, S. 2015. The
genetic basis of pectoralis major myopathies in modern broiler
chicken lines. Poult. Sci. 94, 2870–2879. doi: 10.3382/ps/pev304.
Barekatain, R Vivienne Inhuber, Nishchal Sharma, Tanya Nowland, Thi
Thu Hao Van , Robert J. Moore, David Cadogan. 2025. Intestinal
barrier function, caecal microbiota and growth performance of thermoneutral
or heat stressed broiler chickens fed reduced crude protein
diets supplemented with guanidinoacetic acid. Poultry Science, 104
Boroumandnia Z, Heshmatollah Khosravinia, Babak Masouri & Bahman
Parizadian Kavan. 2021. Effects of dietary supplementation of
guanidinoacetic acid on physiological response of broiler chicken
exposed to repeated lactic acid injection. 2021. Italian Journal of
Animal Science. 20(1), 153–162 https://doi.org/10.1080/182805
X.2021.1873075.
Bonilla, D.A., Kreider, R.B., Stout, J.R., Forero, D.A., Kerksick, C.M.,
Roberts, M.D Eric S Rawson. 2021. Metabolic Basis of Creatine in
Health and Disease: A Bioinformatics-Assisted Review. Nutrients,
;13(4):1238. doi: 10.3390/nu13041238
Chen, L. R., Suyemoto, M. M., Sarsour, A. H., Cordova, H. A., Oviedo-
Rondoìn, E. O., Wineland, M. 2019. Temporal characterization of
broiler breast myopathy (“Woody Breast”) severity and correlation
with growth rate and lymphocytic phlebitis in three commercial
broiler strains and a random-bred broiler strain. Avian Pathol. 48,
–328. doi: 10.1080/03079457.2019.1598541.
DeGroot AA, Braun U, Dilger RN. 2018. Efficacy of guanidinoacetic
acid on growth and muscle energy metabolism in broiler chicks
receiving arginine-deficient diets. Poult Sci. 97(3):890–900.
Fathi M, Tanha T, Saeedyan S. 2022. Influence of dietary lycopene
on growth performance, antioxidant status, blood parameters and
mortality in broiler chicken with cold-induced ascites. Arch Anim
Nutr. 8:1-11. doi: 10.1080/1745039X.2022.2046451.
Fathi, M., Mosleh, Hosayni, Sallah, Alizadeh, Razan, Zandi, Sara, Rahmati,
Vahid, Rezaee, 2023. Effects of black cumin (Nigella Sativa)
seed meal on growth performance, blood and biochemical indices,
meat quality and cecal microbial load in broiler chickens. Livest.
Sci. 274, 105272 https://doi.org/10.1016/j.
Hartchera, L.M., and Lum, H.K. 2019. Genetic selection of broilers and
welfare consequences: a review. World’s Poultry Science Journal
Havenstein, G. B., Ferket, P. R., and Qureshi, M. A. 2003. Carcass
composition and yield of 1957 vs 2001 broilers when fed representative
and 2001 broiler diets. Poult. Sci. 82, 1509–1518.
doi: 10.1093/ps/82.10.1509.
Hekimsoy Z, Oktem I. 2005. Serum creatine kinase levels in overt and
subclinical hypothyroidism. Endocr Res. 31(3):171–175.
Hiramatsu M: 2003. A role for guanidino compounds in the brain. Mol
Cell Biochem. 244:57–62.
Jayasundara N, Tomanek L, Dowd W, Somero G. 2015. Proteomic analysis
of cardiac response to thermal acclimation in the eurythermal
goby fish Gillichthys mirabilis. J Exp Biol. 218:1359–1372
Karamat, F.A.; van Montfrans, G.A.; Brewster, L.M. 2015. Creatine
synthesis demands the majority of the bioavailable L-arginine. J.
Hypertens. 33, 2368.
Khajali F, Lemme A, Rademacher-Heilshorn M. 2020. Guanidinoacetic
acid as a feed supplement for poultry. World’s Poult Sci J.
(2):270–291.
Refere nces
Naseem, K.M. The role of nitric oxide in cardiovascular diseases. Mol.
Aspects Med. 2005, 26, 33–65.
Nasiroleslamia, M., Mehran Torkia, Ali Asghar Sakib and Ali
Reza Abdolmohammadi. 2018. Effects of dietary guanidinoacetic
acid and betaine supplementation on performance,
blood biochemical parameters and antioxidant status of broilers
subjected to cold stress. Journal Of Applied Animal Research, 46(1),
Ostojic, SM, Niess B, Stojanovic M, Obrenovic M. 2013. Creatine
metabolism and safety profiles after six-week oral guanidinoacetic
acid administration in healthy humans. Int J Med Sci 10:141–147.
Ostojic, S.M., M.D. Stojanovic, G. Olcina. 2015. Oxidant-antioxidant
capacity of dietary guanidinoacetic acid, Ann. Nutr. Metab, 67
(4):243–246.
Oviedo-Rondón, E.O., Córdova-Noboa, H.A. 2020. The Potential of
Guanidino Acetic Acid to Reduce the Occurrence and Severity of
Broiler Muscle Myopathie. Front Physiol, 14;11:909. doi: 10.3389/
fphys.2020.00909
Ostojic S.M., Tatjana Trivica Patrik Drida Valdemar Stajera Milan
Vranes. 2018. Effects of Guanidinoacetic Acid Loading on Biomarkers
of Cardiometabolic Risk and Inflammation. Ann Nutr
Metab 72:18–20. DOI: 10.1159/000484945
Osna, N.A., Feng, D., Ganesan, M., Maillacheruvu, P.F., Orlicky, D.J.,
French, S.W, Tuma, D., Kharbanda, K.K. 2016. Prolonged feeding
with guanidinoacetate, a methyl group consumer, exacerbates ethanol-
induced liver injury. World J Gastroenterol, 22:8497–8508.
Peng, X.Y., Xing, T., Li, J.L., Zhang, L., Jiang, Y., Gao, F., 2023. Guanidinoacetic
acid supplementation improves intestinal morphology,
mucosal barrier function of broilers subjected to chronic heat stress.
J. Anim. Sci. 101, skac355.
Percário S, Domingues S, Teixeira L, Vieira J, Fd V, Ciarrocchi D,
Almeida E, Conte M. 2012. Effects of creatine supplementation on
oxidative stress profile of athletes. J Int Soc Sports Nutr. 9:56–64.
Petracci, M., Soglia, F., Madruga, M., Carvalho, L., Ida, E., and Estévez,
M. 2019. Wooden-breast, white striping, and spaghetti meat:
causes, consequences and consumer perception of emerging broiler
meat abnormalities. Compr. Rev. Food Sci. F. 18, 565–583. doi:
1111/1541-4337.12431.
SAS (Statistical Analysis System). 2005. SAS/STAT® 9. User’s Guide.
SAS Institute Inc. Cary, North Carolina.
Ostojic, S.M. 2022. Safety of Dietary Guanidinoacetic Acid: A Villain of
a Good Guy? Nutrients,14, 75. https://doi.org/10.3390/nu14010075.
Surai, P. F. 2020. Antioxidants in Poultry Nutrition and Reproduction:
An Update. Antioxidants, 9, 105; doi:10.3390/antiox9020105
Raei A, Karimi A, Sadeghi A. 2020. Performance, antioxidant status,
nutrient retention and serum profile responses of laying Japanese
quails to increasing addition levels of dietary guanidinoacetic acid.
Ital J Anim Sci. 19(1):75–85.
Tossenberger, J., Rademacher, M., Nemeth, K., Halas, V., and Lemme, A.
Digestibility and metabolism of dietary guanidino acetic acid
fed to broilers. Poult. Sci. 95, 2058–2067. doi: 10.3382/ps/pew083.
Vranes M, Ostojic S, Tot A, Papovic S, Gadzuric S. 2017. Experimental
and computational study of guanidinoacetic acid self-aggregation
in aqueous solution. Food Chem. 237:53–57.
Wei Zhao, Jiaolong Li, Tong Xing, Lin Zhang and Feng Gao. 2021.
Effects of guanidinoacetic acid and complex antioxidant supplementation
on growth performance, meat quality, and antioxidant
function of broiler chickens. J Sci Food Agric; 101: 3961–3968.
DOI 10.1002/jsfa.11036.
Zuidhof, M. J., Schneider, B. L., Carney, V. L., Korver, D. R., and
Robinson, F. E. 2014. Growth, efficiency, and yield of commercial
broilers from 1957, 1978, and 2005. Poult. Sci. 93, 1–13. doi:
3382/ps.2014-04291.
Zugno A, Stefanello F, Scherer E, Mattos C, Pederzolli C, Andrade V,
Wannmacher C, Wajner M, Dutra-Filho C, Wyse A. 2008. Guanidinoacetate
decreases antioxidant defenses and total protein sulfhydryl
content in striatum of rats. Neurochem Res. 33(9):1804–1810.
Articles les plus lus par le même auteur ou la même autrice